
DICOMT P

PT Connectivity Framework

(DCF™)

DCF Developers Guide

Released with DCF version 3.3.68c

Orchestrating Medical Imaging Workflow

Laurel Bridge Software, Inc.

302-453-0222

www.laurelbridge.com

Document Version: 2.55

Document Number: LBDC-000018-0255

Last Saved: 6/11/2020 10:32:00 PM

TP

PT DICOM is the registered trademark of the National Electrical Manufacturers Association for its standards publications relating to digital

communications of medical information.

Page ii

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

What’s new in this version of the manual?

• Updated version.

• Updated supported platform configurations.

 Page iii

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Table of Contents

1. Overview .. 1
1.1. System Architecture Overview ... 1
1.2. An Example DCF Application .. 2
1.3. Components ... 4

1.3.1. Component Classification... 4
1.3.1.1. DCF Component Categories .. 4
1.3.1.2. DCF Component Physical Types ... 4

1.3.2. Selected DCF Components Organized by Category ... 5
1.3.2.1. DICOM Applications ... 5
1.3.2.2. Non DICOM Applications ... 6
1.3.2.3. Examples ... 7
1.3.2.4. Common Service Interface Libs .. 9
1.3.2.5. Common Service Implementation Libs ... 9
1.3.2.6. Application Support Libs ... 10
1.3.2.7. IDL Interface Libs ... 11

1.4. Platforms ... 12
1.5. Systems ... 13

2. Installing the DCF .. 15
2.1. Multi-user vs. Single-user Installation .. 15
2.2. DCF Shared Files .. 15
2.3. DCF Per-user Files .. 16
2.4. The DCF Remote Service Interface .. 19

2.4.1. Running the Apache Web Server ... 19
2.4.1.1. Alternate Web Servers ... 19

2.4.2. Connecting to the web server ... 20
2.4.3. The DCF Remote Service Interface .. 20

2.4.3.1. Start with … (Choose a configuration) .. 21
2.4.3.2. Shutdown DCF Processes .. 21
2.4.3.3. Clear Log Files .. 21
2.4.3.4. View Log Files .. 22
2.4.3.5. View DCF Real-Time Log .. 24
2.4.3.6. View/Edit Configuration Files ... 25
2.4.3.7. View DCF Online Documentation... 26
2.4.3.8. Set Debug Flags ... 27
2.4.3.9. Configure [DCF system config name] ... 29
2.4.3.10. Edit Global Filter Sets ... 31

2.4.4. The DCF Command-line Operation ... 32
2.5. Using Multiple Versions of the DCF... 33

2.5.1. UNIX .. 33
2.5.2. Windows ... 33
2.5.3. Testing .. 33

2.6. Windows x86 vs. x64 .. 34

3. DICOM Programming Overview ... 35
3.1. Core DCF DICOM classes .. 35

3.1.1. Element related ... 35
3.1.2. Association Manager .. 35

3.2. Verification Service Class ... 36
3.2.1. Verification Client (SCU) ... 36
3.2.2. Verification Server (SCP) ... 36

3.3. Storage-related Service Classes ... 36
3.3.1. Store Client (SCU) ... 36
3.3.2. Store Server (SCP) ... 36
3.3.3. Storage Commitment Server (SCP) .. 37
3.3.4. Storage Commitment Client (SCU) .. 37
3.3.5. Storage Commitment Client Agent .. 37

Page iv

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

3.4. Query/Retrieve (Q/R) Service Class ... 38
3.4.1. Q/R Client (SCU) ... 38
3.4.2. Q/R Server (SCP) ... 38

3.5. Modality Worklist Service Class ... 39
3.5.1. MWL SCU ... 39
3.5.2. MWL Server (SCP) .. 39

3.6. Modality Performed Procedure Step Service Class ... 39
3.6.1. MPPS Client (SCU) .. 39
3.6.2. MPPS Server (SCP) .. 39

3.7. Print Service Class .. 40
3.7.1. Print Client (SCU) .. 40
3.7.2. Print Server (SCP) – (C++ only) .. 40

3.8. DICOM File (Media Storage) Services ... 40
3.8.1. DICOM File Set Reader (FSR role) ... 40
3.8.2. DICOM File Set Creator and Updater (FSC and FSU roles) .. 40

4. C++ Programming Examples ... 41
4.1. Running Example Servers ... 41

4.1.1. Using the Web Service Interface .. 41
4.1.2. Using a DCF Command Prompt – w/Common Services .. 41
4.1.3. Using a DCF Command Prompt – w/Minimal Resources .. 42

4.2. DICOM Programming Examples .. 42
4.2.1. Reading a DICOM file and extracting an element from the header ... 42
4.2.2. Creating a DICOM file that contains image data and patient demographics .. 44
4.2.3. Using the C++ StoreClient ... 45

4.2.3.1. Creating a job from DicomPersistentObjectDescriptors .. 45
4.2.3.2. Using C++ StoreClient to C-Store DicomDataSets in memory ... 45

4.2.4. Using the C++ PrintClient .. 47
4.2.5. Media Storage Application Profiles – DICOMDIR files .. 49

4.2.5.1. Example – Creating a DICOMDIR.. 49
4.2.5.2. Example – Adding to a DICOMDIR ... 50
4.2.5.3. Example – Reading a DICOMDIR .. 51

4.3. Deploying a Simple Standalone DCF C++ Application .. 51
4.4. Common Services Programming Examples .. 53

4.4.1. C++ “hello world” Example Application Using the DCF .. 53
4.4.2. Using the LOG interface – Logging from C++ programs .. 56
4.4.3. Using the CDS interface ... 57
4.4.4. Using the APC interface ... 57

4.5. Advanced DICOM Programming Examples ... 57
4.5.1. Writing a customized storage SCP ... 57
4.5.2. Writing a customized query retrieve SCP .. 61

4.6. Using the C++ Modality Worklist examples ... 64
4.7. DICOM compression transfer syntax support for C++.. 64

5. Java Programming Examples ... 66
5.1. Running Example Servers ... 66
5.2. Using the DCF with Java IDE tools .. 66

5.2.1. Using the DCF with Eclipse for Java ... 66
5.3. DICOM Programming Examples .. 67

5.3.1. Using Java Print Element Value Program .. 67
5.3.1.1. Example – ex_jprint_element_value .. 68

5.3.2. Using Java modify DICOM image data program ... 69
5.3.2.1. Example – ex_jModPixelData ... 69

5.3.3. Using Java DICOM Verification (Echo) Client Classes ... 71
5.3.3.1. Example – ex_jecho_scu ... 71

5.3.4. Using Java Modality Worklist Query SCU Classes ... 73
5.3.4.1. Example – ex_jmwl_client .. 73

5.3.5. Using Java Print Client Classes .. 76
5.3.5.1. Example – ex_jprint_client .. 77

5.3.6. Using Java Store Client Classes ... 80

 Page v

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

5.3.6.1. Example – ex_jstore_client .. 80
5.3.7. Using Java Q/R Client Classes ... 82

5.3.7.1. Example – ex_jqr_scu .. 82
5.3.8. Handling alternate character sets with DCF (Java)... 84

5.4. Deploying a Simple Standalone DCF Java Application .. 84
5.5. Common Services Programming Examples .. 86

5.5.1. Java “Hello World” Example Using DCF Common Services .. 86
5.5.2. Using the LOG interface – Logging from Java programs .. 91
5.5.3. Using the CDS interface ... 92
5.5.4. Using the APC interface ... 92

5.6. Advanced DICOM Programming Examples ... 92
5.6.1. Using StorageCommitmentSCU ... 92

5.6.1.1. Example – Send store commit requests, and receive StoreCommitClientListener notifications 92
5.6.2. Using Java MWLClient Classes ... 94

5.6.2.1. Example – ex_jmwl_scu .. 94
5.6.3. Using Java MPPSClient Classes ... 94

5.6.3.1. Example – ex_jmpps_scu .. 94
5.6.4. Using Java Store, Q/R, and MWL Server-Related Classes .. 95

5.6.4.1. Example – ex_jstore_scp ... 95
5.6.4.2. Example – ex_jqr_scp .. 99
5.6.4.3. Example – ex_jmwl_scp .. 100
5.6.4.4. Using the MWL Server as an MPPS Server .. 100
5.6.4.5. Example – Server Objects .. 100
5.6.4.6. Example – StoreSCP: Implementing a custom storeObject method .. 100
5.6.4.7. Additional coding examples: ... 102
5.6.4.8. Writing a Custom DICOM SCP .. 102

5.7. DICOM Compression Transfer Syntax Support for Java .. 102
5.7.1. Example – ex_jdcf_filter: Uncompressed to Compressed .. 103
5.7.2. Example – ex_jdcf_filter: Compressed to Uncompressed .. 103

5.8. JAI – DCF integration for Java ... 103
5.8.1. Example – ex_jdcf_dcm2jai: Convert a DICOM file to a JAI type .. 104
5.8.2. Example – ex_jdcf_jai2dcm: Convert JAI types to a DICOM file ... 105
5.8.3. Example – ex_jdcf_dcmview: View a DICOM Image file ... 105
5.8.4. Example – Writing a JPEG Image with Java .. 105

6. C# Programming Examples .. 107
6.1. Running Example Servers ... 107
6.2. Using the DCF with MS Visual Studio .NET 2003/2005 for C# .. 108

6.2.1. Opening an Existing C# Example Project .. 108
6.2.2. Quick Start - Using create_cs_comp.pl to generate VS project files and source code 109
6.2.3. Using dcfmake.pl to generate a .csproj file .. 109
6.2.4. Manually Creating C# Projects from MS Visual Studio 2003/2005 IDE ... 109

6.3. DICOM Programming Examples .. 110
6.3.1. DICOM File Access ... 110

6.3.1.1. Example – Open a DICOM file ... 110
6.3.1.2. Example – Create a DICOM file ... 110
6.3.1.3. Example – Create a DICOM file from Config Group Data ... 111
6.3.1.4. Example – Open, Modify, and Save a DICOM file ... 112

6.3.2. Using VerificationClient... 113
6.3.2.1. Example – Connect to a Verification SCP ... 113

6.3.3. Using StoreClient ... 114
6.3.3.1. Example – Create and submit a store job from files on disk.. 114
6.3.3.2. Example – Create and submit a store job – Handling Events .. 115

6.3.4. Using Query/Retrieve classes ... 115
6.3.4.1. Example – Using Query/Retrieve .. 117

6.3.5. Using PrintClient .. 117
6.3.5.1. Example – Create and submit a print job, handling status events .. 119
6.3.5.2. Example – Create and submit a print job where ImageBox data comes from DICOM disk files. 119

6.3.6. Creating and Populating DICOM Sequences ... 120
6.3.6.1. Example – Explicitly creating DICOM Sequence elements .. 120

Page vi

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

6.3.6.2. Example – Setting DICOM Sequence elements using a config group ... 121
6.3.7. Handling alternate character sets with DCF (C#) ... 122

6.4. Deploying a Simple C# Standalone Application ... 123
6.4.1. Deploying a Simple C# Standalone DCF Application ... 123
6.4.2. Deploying a Simple C# Standalone OEM Application .. 125

6.5. Common Services Programming Examples .. 127
6.5.1. C# “hello world” Example Application Using the DCF ... 127
6.5.2. Using the LOG interface – Logging from C# programs ... 131
6.5.3. Avoiding or Embracing use of the Common Services.. 131
6.5.4. Using the CDS interface ... 133
6.5.5. Using the APC interface ... 133

6.6. Advanced DICOM Programming Examples ... 133
6.6.1. Using StorageCommitmentSCU ... 133

6.6.1.1. Example – Send store commit requests and receive StoreCommitClientListener notifications 134
6.6.2. Using MWLClient .. 135

6.6.2.1. Example – Send Worklist Query and wait for all responses before continuing ... 135
6.6.2.2. Example – Send Worklist Query and handle responses as they arrive .. 135

6.6.3. Using MPPSClient.. 135
6.6.3.1. Example – MPPSClient Console Application ... 135
6.6.3.2. Example – Send DIMSE N-CREATE or N-SET messages to a MPPS Server ... 135

6.6.4. C# Store, Q/R, and MWL Server-Related Examples ... 136
6.6.4.1. Using the MWL Server as an MPPS Server .. 137
6.6.4.2. Example – Implementing a custom storeObject() method ... 138
6.6.4.3. Example – How DicomDataService (DDS) gets called: .. 139
6.6.4.4. Example – Adding OEM specific data to DicomSessionSettings: .. 140
6.6.4.5. Example – Receiving or Logging Retired SOP classes: .. 140
6.6.4.6. Writing a Custom DICOM SCP .. 141

6.7. DICOM compression transfer syntax support for C# .. 141

7. Using DCF System Manager to control processes ... 143
7.1. Installing and Starting the System Manager .. 143

7.1.1. Installing and starting as a service on Windows ... 143
7.1.2. Installing and starting as a normal server process on Windows ... 143
7.1.3. Installing and starting on Unix ... 144

7.2. System Manager Related Interfaces .. 144
7.3. System Manager Configuration ... 145

7.3.1. System Manager Application Configuration .. 145
7.3.2. System Manager System Configuration ... 146

7.4. System startup for a DCF server application ... 149
7.5. System shutdown for a DCF server application .. 150

8. The DCF Development Environment ... 151
8.1. Using the dcfmake.pl utility .. 151

8.1.1. Command line options for dcfmake.pl ... 151
8.1.2. The cinfo.cfg file .. 152
8.1.3. Generated files for various component types ... 155

8.2. Example: Creating a DCF library component ... 158
8.3. Example: Creating a DCF application component .. 159
8.4. Using iodgen to create DICOM dataset wrappers to represent an IOD ... 160

9. Configuring DCF Applications .. 163
9.1. Configuration Files and the CDS interface ... 163

9.1.1. Using cds_client to access data in the configuration database.. 164
9.1.2. Receiving notifications of updated data.. 164

9.2. Application and Process Configurations ... 165
9.2.1. Application Configuration Settings .. 165

9.2.1.1. Structure of an application or process configuration ... 166
9.3. Process Configuration Settings ... 166

9.3.1. Process configuration with AppControl setup .. 166
9.3.1.1. Monitoring the Process Configuration ... 167

9.3.2. Process configuration without AppControl setup ... 167

 Page vii

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

9.3.3. Creating a custom application configuration .. 167
9.4. Log/Debug tracing control using “debug_flags” .. 169

9.4.1. Example – Setting Debug Flags for an Example App .. 170
9.4.2. Defined Debug Flags .. 170

9.5. C#-related Configuration Notes .. 171
9.5.1. Description of DCF setup code .. 171
9.5.2. Common services setup description: .. 171

10. Configuring DICOM features ... 173
10.1. Java and C# DICOM configuration ... 173

10.1.1. Example Session settings.. 173
10.2. C++ DICOM configuration ... 177
10.3. Customizing DicomDataDictionary .. 178

11. DICOM Image Compression .. 180
11.1. Lossy Compression Quality Issues & Concerns.. 180
11.2. JPEG Encoding Notes ... 180

11.2.1. JPEG Lossless (.57, .70) Encoding Notes .. 180
11.2.2. JPEG Lossy (.50, .51) encoding notes .. 182
11.2.3. JPEG 2000 Lossless (.90) encoding notes .. 183
11.2.4. JPEG 2000 Lossy (.91) encoding notes .. 183

11.3. JPEG Decoding Notes ... 185
11.3.1. Photometric Interpretation Problems .. 185
11.3.2. JPEG Lossless (.57, .70) Decoding Notes .. 185
11.3.3. JPEG Lossy (.50, .51) Decoding Notes .. 185
11.3.4. JPEG 2000 Lossless (.90) Decoding Notes .. 186
11.3.5. JPEG 2000 Lossy (.91) Decoding Notes .. 186

11.4. Using Aware, Inc JPEG Compression libraries... 186
11.4.1. C# configuration ... 186
11.4.2. Java Configuration .. 186
11.4.3. C++ Configuration ... 187

12. I/O Statistics for Java and C# ... 188

13. Deploying a DCF-based application .. 189
13.1. Deployment Guidelines ... 189
13.2. License Key for a Deployed Application .. 189

13.2.1. OEM applications that ship with an installed license ... 189
13.2.2. OEM applications that do not ship with an installed license .. 189
13.2.3. OEM applications that use an activatable license ... 190

13.3. Limiting the DCF libraries required for Deployment .. 190
13.3.1. Find Application Dependencies - Windows ... 192
13.3.2. Find Application Dependencies - Linux ... 193
13.3.3. Find Application Dependencies - Java ... 193

13.4. Deploying standalone applications containing DCF code ... 194
13.4.1. Language Specific Standalone Installation ... 194
13.4.2. An Example Application Installer .. 194

13.5. DICOM Ports .. 196

Appendix A: Glossary of Terms... 198

Appendix B: Bibliography ... 203

1. The DICOM Standard .. 203

2. Integrating the Healthcare Enterprise (IHE) ... 203

3. Sources for Compression Related Information... 203

Appendix C: Storing Images from Print SCP ... 205

1. Collecting image and association info from Print_SCP ... 205
1.1. Preparation and Configuration Steps ... 205
1.2. Example Batch Script .. 206
1.3. Viewing Print SCP output via a web browser ... 206

Appendix D: Using DCF Dicom Filters ... 208

1. Fixing or working-around protocol problems... 208

Page viii

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

1.1. An application is sending an incorrect field in a DICOM print request .. 208
1.2. Modifying the DIMSE messages sent by a Java application ... 211

2. Using DicomTestFilter to support automated testing ... 212

3. Logging/Debugging DICOM Filter Effects .. 213

4. Using DCF DICOM Filters Overview .. 213

5. DCF DICOM Filter Configuration Overview .. 214
5.1. Sample configuration for the DicomElementFilter class. .. 215
5.2. Other Filter Types ... 216
5.3. Filter Configuration Files .. 216

5.3.1. Specifying a Sequence in a Configuration File .. 222
5.3.2. Using Macros to Specify Data .. 223

5.4. Example Filters ... 224
5.4.1. Example 1: Replacing a Value ... 224
5.4.2. Example 2: Removing an Element ... 224
5.4.3. Example 3: Modifying an Element’s Value with Regular Expressions .. 225
5.4.4. Example 4: Padding an Element’s Value ... 225

6. Developing Custom Filters ... 226
6.1. Custom Filters in Java ... 227
6.2. Custom Filters in C# ... 228

Appendix E: DCF MakeUID Function ... 229

1. Description of the DCF makeUID function ... 229

2. The function getUIDPrefix() returns the uid_prefix. .. 229

3. The function getUIDSuffix() returns a new UID suffix each time it is called. ... 230

Appendix F: Using Nunit tests with DCF .NET Applications ... 231

1. Example NUnit test class ... 231

2. Some Background on NUnit: ... 232

Appendix G: Using Perl with the DCF ... 233

Appendix H: Customizing the DCF Remote Service Interface .. 234

1. Shortcuts for Setting Debug Flags .. 234
1.1. Debug Shortcuts .. 234
1.2. Viewing the current settings .. 235

2. Example Debug Shortcut File .. 236

3. CDS Configuration Shortcuts ... 238
3.1. Shortcut Attributes .. 238

3.1.1. Types of shortcuts... 239
3.1.1.1. title ... 239
3.1.1.2. html .. 239
3.1.1.3. display_only ... 239
3.1.1.4. integer or string .. 240
3.1.1.5. boolean... 240

3.1.2. Optional attributes: ... 240
3.1.3. Synchronizing attributes: .. 241

3.2. Automatic Shortcut Generation ... 242
3.3. Example shortcut configuration file: ... 243

4. Authenticating Access to DCF Web Pages .. 245

5. Java Applet Issues .. 247

6. Other Applet Issues .. 249
6.1. Enabling Java .. 249
6.2. Firewall Issues ... 250
6.3. JavaScript Issues ... 251

Appendix I: Editing the Extended Data Dictionary .. 254

Appendix J: Product Licensing and Activation .. 258

1. Installing a new SDK License .. 258

 Page ix

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

2. Activating an SDK License .. 259
2.1. SDK Network Activation Mode .. 260
2.2. SDK Manual Activation Mode .. 261

3. Deploying OEM Applications with an Activatable License .. 264
3.1. Developer Perspective ... 264

3.1.1. Files to Distribute ... 265
3.2. User Perspective .. 266

3.2.1. Install the un-activated template license ... 266
3.2.2. Create and Reserve a license .. 266
3.2.3. Activate a license .. 267

3.2.3.1. Network Activation Mode ... 268
3.2.3.2. Manual Activation Mode ... 269

3.3. Administrative Issues .. 273
3.3.1. Reactivating a License .. 273
3.3.2. Transferring a License .. 273
3.3.3. Networking Issues Related to Network Activation .. 273

Page x

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Table of Figures

Figure 1: Typical DCF-based DICOM server application .. 2
Figure 2: DCF Remote Service Interface Screen Example .. 20
Figure 3: Example – List of System Configurations to Start .. 21
Figure 4: Example – Partial List of Log Files .. 23
Figure 5: DCF Real-Time Log Screen Example .. 24
Figure 6: DCF Configuration Viewer Screen Example .. 25
Figure 7: DCF Documentation Screen Example .. 26
Figure 8: DCF Set Debug Flags Screen Example .. 27
Figure 9:Set Debug Flags Example – List of Running Processes .. 28
Figure 10: Set Debug Flags example – List of Components in Store SCP ... 28
Figure 11: Set Debug Flags Example – List of Debug Flags in the DCS Component ... 29
Figure 12: Modifying the Server Configuration ... 30
Figure 13: DCF Global Filter Set Editor Screen Example ... 31
Figure 14: Creating a DCF Library Component ... 158
Figure 15: Creating a DCF Application Component .. 159
Figure 16: Using a custom filter editor class .. 227
Figure 17: Displayed Debug shortcuts. .. 237
Figure 18: After Clicking the Update button. ... 238
Figure 19: Display results of applying a shortcut configuration file. ... 245
Figure 20: Example security warning from Firefox for a signed JAR file ... 248
Figure 21: Example security warning from Internet Explorer for a signed JAR file .. 248
Figure 22: Enabling Java in Firefox ... 249
Figure 23: Enabling Java in Internet Explorer .. 250
Figure 24: Setting firewall exceptions .. 251
Figure 25: Example JavaScript warning ... 251
Figure 26: Enabling JavaScript in Firefox .. 252
Figure 27: Enabling JavaScript in Internet Explorer .. 252
Figure 28: Adding your computer to the list of trusted sites .. 253
Figure 29: Editing the Extended Data Dictionary in GVIM ... 254
Figure 30: Editing the Extended Data Dictionary .. 255
Figure 31: Editing the Extended Data Dictionary as text ... 256
Figure 32: Select the “elements” group to add to the data dictionary, and the click “Add”. .. 256
Figure 33: Enter the new values for the data dictionary ... 256
Figure 34: Installing a new license ... 258
Figure 35: Warning to activate the license ... 259
Figure 36: Network mode for activating a license.. 260
Figure 37: Activation succeeded via Internet ... 260
Figure 38: Manual mode for activating a license ... 261
Figure 39: License activation web page ... 262
Figure 40: Web page showing license activation code ... 263
Figure 41: Successfully activated the license manually ... 263
Figure 42: Licensing Web Site Options ... 265
Figure 43: Reserving a license key ... 267
Figure 44: Network activation of a license ... 268
Figure 45: Manual activation of a license .. 269
Figure 46: License activation web page ... 270
Figure 47: Activation Code Display ... 271
Figure 48: Manual activation succeeded .. 272

 Page xi

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Conventions

The following font conventions are followed throughout this document:

Bold

is used for definition of terms.

Constant Width Italics

is used for filenames, directory names, URLs, commands to runs, and developer actions.

Italics

is used for emphasis.

Constant Width Large

is used for DCF class names, component names, interfaces, or method names when they appear

within this document’s body text. Method names are shown with the usual () notation.

Constant Width Small

is used for code blocks or specific non-code file contents.

 Page 1

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

1. Overview

The DICOM Connectivity Framework – or DCF – is a software product that enables a medical imaging

system – printer, scanner, modality, archive device, workstation, etc. – to communicate with other

devices over a network, using the DICOM version 3 protocol. By using the DCF, an OEM can provide

DICOM connectivity for their device with a minimum of effort. The DCF provides much more than

DICOM libraries – Common Services Components allow an OEM to produce commercial-quality

applications without having to reinvent such facilities as logging, configuration data management, and

process control. The DCF development environment allows developers to focus on adding value to their

products and getting to market quickly.

The DICOM Connectivity Framework supports modular programming and mixed language development

environments. In most large-scale software development efforts, there are multiple languages or

technologies involved, possibly multiple target platforms, and multiple developers working on different

subsystems. Managing these processes and technologies is at best time-consuming and tedious – at

worst it can be a nightmare. The DCF provides technology to simplify these complex software

development tasks.

The DCF can be used in two distinct ways. First, where local conventions, file system layout, build

processes, and such are well established, DCF applications and libraries can be used like any other

software tool product: point your makefiles and/or IDE settings and various environment variables to

the DCF library, include, and binary directories, and go. The second approach uses the DCF to help

organize the structure of applications and automate much of the process. The DCF will generate

makefiles, Windows Visual Studio project files, debug/trace instrumentation for your code,

configuration files, and API documentation. The DCF encourages the re-use of both software AND the

processes used to create and manage that software. The DCF performs all of these tasks using Laurel

Bridge Software proprietary technologies, along with best-of-breed commercial or open source

software products.

The DCF can be used to create DICOM solutions in the Microsoft .NET environment, using C# or other

.NET programming languages.

1.1. System Architecture Overview

The DCF is a modular system, made up of various software components. These software components

are combined with the OEM’s software on a particular computer platform to form a system. DCF

components are tested by Laurel Bridge in the context of various systems. Obviously, an OEM will be

defining his own system configuration. The OEM system may resemble one of the DCF sample

systems, or it may be something altogether different.

A component is a reusable, independently built, unit of code.

A platform is the computing environment on which DCF components run. This includes hardware,

operating system, and any third-party software that must be present on the system.

A system is the combination of one platform and some number of software components.

Page 2

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

1.2. An Example DCF Application

The following diagram shows the structure of a typical DCF application (a DICOM storage service class

provider).

DCS

(Dicom Core Services)

dcf_store_scp

DSS

(DIcom Store

Services)

LOG

LOG_a

CDS

CDS_a

APC

APC_a

DDS

DDS_a

DCF

(DCF common

facilities)

DCFUtil

(DCF Utilities)

DBMS

Common Services

AdapterLibraries

Common Services

Interface Libraries

Application Support

Libraries

Application

Platform (Operating

System / H/W)

Networking Devices

Mass Storage

Figure 1: Typical DCF-based DICOM server application

The diagram shows the division of DCF libraries into layers. The top layer “application” contains the

“dcf_store_scp” application component. This is the entry point for the application. During initialization,

dcf_store_scp installs the selected Common Services Adapters, and then uses objects in the DCS and

DSS libraries to perform the real work of implementing the Storage SCP.

The libraries in the “application support” layer perform the real DICOM work. The DCS library provides

the basic classes for DICOM attributes or elements, data sets, PDUs, DIMSE messages, as well as higher

level classes such as AssociationManager, DicomAssociation, for easily managing multiple

concurrent associations, DicomDataDictionary, numerous classes for network and file I/O and Data

set/Image filtering.

 Page 3

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

The DSS library provides the StoreSCP class which registers as the handler for all Storage

presentation contexts. C-Store-Request messages are dispatched to StoreSCP.

The “common services interface” layer provides abstract interfaces for services such as logging,

application configuration, process control, and data storage/retrieval. StoreSCP invokes the

storeObject() method on the DDS (DICOM Data Service) interface to locally store the dataset

contained in the C-Store-Request message.

The “common services adapter” layer provides concrete implementations of common services. The

LOG adapter (LOG_a) library writes log messages to either the file system or the LOG Server, via the

DLOG (Distributed LOG) CORBA interface. The Configuration Data Service adapter (CDS_a)

accesses configuration data from either the file system or the DCDS_Server, using the DCDS

(Distributed CDS) CORBA interface. The DICOM Data Service adapter might store image or SOP

instance data to the file system, and may store header data in an SQL database system. An OEM that

wishes to customize the behavior of the store_scp for example to use a locally defined schema needs

only implement one function: “storeObject()”. The developer can opt to hide all handling of

concurrent network associations, DIMSE messages, and other complex DICOM details. See the section

“Writing a Customized Storage SCP” (Section 4.5.1) for an example of extending the

DicomDataService implementation.

Page 4

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

1.3. Components

The DCF is designed as a collection of components. Components in the DCF are rather large-grained,

along the lines of “package” in the UML terminology, or “subsystem” in certain other models. This is

as opposed to some systems where “component” is synonymous with “class” or “object” which would

lead to a more fine-grained component architecture.

A DCF Component that is used directly by Microsoft.NET clients is delivered as a binary “Assembly”,

along with associated configuration data.

1.3.1. Component Classification

Each component or part of a DCF based software system is one of the supported component physical

types (see 1.2.1.2). All components of a given type share a common structure. Once you have

determined what type of component you need, there is no need to waste time deciding how to manage

the runtime or build configuration information, how to instrument the component, how to arrange the

source files for that component, etc. API documentation for components can be automatically

generated. Functional or technical specifications, test plans, and other important documents can be

organized along component boundaries, providing additional structure and consistency to your

development processes. DCF components may also be classified in terms of their category or functional

type.

1.3.1.1. DCF Component Categories

Type Description

DICOM Applications Executable programs which function as a DICOM SCU or

SCP, plus various other DICOM utilities

Applications DCF support applications and other executable programs

Common Services Interface Libraries Interfaces to horizontal services

Common Services Adapter Libraries Implementations of horizontal services

Application Support Libraries Interfaces and implementations of vertical services

IDL Interface Libraries CORBA interfaces (Java and C++ only)

Miscellaneous Scripts and other items

Examples Library or Application components used to demonstrate use

of the DCF

Tests Components used to test other DCF components

1.3.1.2. DCF Component Physical Types

Type Description

cpp_lib C++ shared library

Unix: a .so file, and accompanying header (.h) files

Windows: a .dll file, .lib file and accompanying .h files

cpp_lib_src C++ shared library source

Source code and header files that are logically separate, but compiled (and in the case of Windows

DLL, linked) together with other cpp_lib_src components to form a cpp_lib_pkg. See

cpp_lib_pkg.

cpp_lib_pkg C++ shared library package

 Page 5

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Unix: a .so file, and accompanying header (.h) files

Windows: a .dll file, .lib file and accompanying .h files

A cpp_lib_pkg combines multiple cpp_lib_src components into a single buildable component.

Components that have circular dependencies can be defined separately (cpp_lib_src) but built as

one (cpp_lib_pkg). This becomes an issue only when building a Windows dll that must “link”

with other libraries, resolving any external symbol references.

java_lib Java shared library

A DCF Java shared library corresponds to a Java package. The primary deliverable is a directory

of .class files, or a .jar

cs_lib C# library

A DCF C# library corresponds to a .NET assembly. The primary deliverable is a dll file.

DCF .Net assembly dll’s are registered in the global assembly cache by the installation program.

You can register assemblies manually using the “gacutil” application.

cpp_app C++ application

An application or binary program. Every application has a default configuration file (which will

ultimately be represented as a CFGGroup object). This application configuration file contains a

copy of the component configuration file from each C++ library component used by the

application.

Application names must be unique, i.e., a C++ app and a Java app cannot have the same name.

cpp_jni_lib C++ JNI library - Java native invocation lib

cpp_com_lib C++ dll that implements one or more COM interfaces. Similar to VS ATL dll project

cpp_ipc_app C++ application that implements a COM interface in a server proc., and also supports CORBA

communications.

java_app Java application

A Java executable is like a Java shared library, except that one of the classes has a “main()”

function, and that there is an application configuration file, like a C++ application.

cs_app C# application

cs_win_app C# Windows GUI application

idl_lib IDL interface

An IDL interface corresponds to an IDL module. The result of building an IDL interface is C++

shared library, and associated header files, and a Java shared library.

1.3.2. Selected DCF Components Organized by Category

1.3.2.1. DICOM Applications

Name Component

Type

Description

dcf_analyze cpp_app Display DICOM file information - creates pixel data value histogram,

and other statistics

dcf_create_fileset cpp_app Create a DICOMDIR index file from a collection of DICOM files

dcf_dump cpp_app Print the contents of a DICOM file to the console - automatically detects

file encoding

dcf_echo_scp cpp_app DICOM Verification Service Class Provider - used primarily for testing

dcf_echo_scu cpp_app DICOM Verification Service Class User - used to ping a DICOM server

dcf_filter cpp_app Apply filtering operations to a DICOM file, creating a modified file

dcf_mod cpp_app Perform modifications to a DICOM file, creating a new DICOM file

Page 6

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Name Component

Type

Description

dcf_mpps_scu cpp_app DICOM Modality Performed Procedure Step Service Class User - used

to send an MPPS object to a server

dcf_mwl_scp cpp_app DICOM Modality Worklist/Performed Procedure Step Service Class

Provider

dcf_mwl_scu cpp_app DICOM Modality Worklist Service Class User - used to retrieve a list of

worklist items from a server

dcf_pg cpp_app DICOM Test Pattern Generator - creates images or other DICOM file

types

dcf_print_scp cpp_app DICOM Print Service Class Provider

dcf_print_scu cpp_app DICOM Print Service Class User - used to send sheets of images to a

server

dcf_qr_scp cpp_app DICOM Query Retrieve Service Class Provider

dcf_qr_scu cpp_app DICOM Query Retrieve Service Class User - used to query or move sets

of objects from a server

dcf_store_scp cpp_app DICOM Storage Service Class Provider

dcf_store_scu cpp_app DICOM Storage Service Class User - used to send objects to server for

storage

dcf_storecommit_scu cpp_app DICOM Storage Commitment Service Class User - used to request

commitment for long term storage of objects

dcm2jpeg cpp_app Convert DICOM images to JPEG or JPEG2000

jdcf_ImageViewer java_app Java app for viewing DICOM images

1.3.2.2. Non DICOM Applications

Name Component

Type
Description

apc_client cpp_app Command line client for Application Control

cds_cgi cpp_app CGI program to set attributes in CDS via shortcuts

cds_client cpp_app Command line client for Configuration Data Service

dcf_info cpp_app Display DCF version and system information

hex_dump cpp_app Formatted hexadecimal display for files

sdfcgi cpp_app Set debug flags WWW cgi-bin program

sdfgroup_cgi cpp_app Set debug flags as groups - WWW cgi-bin program for DCF

dcf_sysmgr cpp_ipc_app DCF System Manager

NDCDS_Server cs_app C# Configuration DataBase Server

CfgEdit java_app Configuration program for Java CDS/CDS_a components

DCDS_Server java_app Distributed Config Data Service - Java server for CDS data

storage/retrieval

DLOG_Server java_app Java server implementation of DLOG interface, for centralized logging

facilities

FilterEditor java_app Editor for filters used by the DCF

FilterSetEditor java_app Editor for filter sets used by the DCF

Log_viewer java_app Java viewer of DLOG_Server output

PrinterServer java_app Java Printer Server application

Std_applets java_app Standard configuration information for all applets to use

 Page 7

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

1.3.2.3. Examples

Name Component Type Description

ex_cds cpp_app Example program that uses DCF common services - CDS in

particular

ex_combo cpp_app Example program that uses a combination of DCF API’s for

DICOM image creation, storage, and printing

ex_create_file cpp_app Example program of using DCS component for creating a

DICOM file

ex_dump_dicom_dir cpp_app Example program that dumps the contents of DicomDir.

ex_file_access_1 cpp_app Example program use of API’s to access data in a DICOM file

ex_hello_world cpp_app Example program that uses DCF common services to

implement the classic first application

ex_iod cpp_app Example program that uses IOD library component to access

Information Object Descriptions

ex_notify cpp_app Example program that uses CDS services to create a simple

distributed alarm delivery system.

ex_oemlog cpp_app Unit test for DCF LOG interface and OEMLOG_a custom

adapter example implementation

ex_print_element_value cpp_app Example program showing very basic use of API’s to access

data in a DICOM file

ex_server cpp_app Example server program that uses DCF common services

ex_verification_scu cpp_app Example program that uses the DCS::VerificationSCU class

OEMLOG_a cpp_lib OEM LOG adapter - example custom implementation of LOG

interface

ex_ndcf_create_fileset cs_app Create a DICOMDIR index file from a collection of DICOM

files

ex_ndcf_dump cs_app C# example app that reads a DICOM file and displays to console

ex_ndcf_filter cs_app Example using DCF filter classes to modify a DICOM file

ex_ndcf_HelloWorld cs_app C# example app logs.

ex_ndcf_ModPixelData cs_app C# example app that reads a DICOM file, modifies the pixel

data, and creates a new file.

ex_ndcf_mwl_scu cs_app C# DICOM MWL Client example.

ex_ndcf_simple_query_scu cs_app C# DICOM Query Retrieve or MWL Client example.

ex_ndump_dicom_dir cs_app C# example app that reads a DICOMDIR file and displays to

console

ex_necho_scu cs_app CS client app that demonstrates use of VerificationClient and

DicomSCU in DCS lib

ex_nmpps_scu cs_app MPPS Example with source code.

ex_nmwl_scp cs_app CS server app that demonstrates use of QRServer and

DicomSCP in DCS lib

ex_nmwl_scu cs_app MWL Example with source code.

ex_nprint_client cs_app C# client app that demonstrates use of PrintClient and DPS lib

ex_nprint_element_value cs_app C# example app that reads a DICOM file and displays one

element

ex_nprint_scu cs_app CS client app that demonstrates use of PrintClient and DPS lib

Page 8

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Name Component Type Description

ex_nqr_scp cs_app CS server app that demonstrates use of QRServer and

DicomSCP in DCS lib

ex_nqr_scu cs_app Query Example with source code.

ex_nstorecommit_scp cs_app CS server app that demonstrates use of StoreServer and

DicomSCP in DCS lib

ex_nstorecommit_scu cs_app cs client for Storage Commitment SOP class

ex_nstore_client cs_app cs client for StoreClient and StoreSCU classes

ex_nstore_scp cs_app CS server app that demonstrates use of StoreServer and

DicomSCP in DCS lib

ncds_client cs_app Command line client for Configuration Data Service

OEMLOG_a cs_lib LOG Client Adapter - C# example implementation of

DCF.LOGClient interface

ex_ndcf_CFGObserver cs_win_app CDS observer example application.

ex_ndcf_echo_scu cs_win_app C# DICOM Echo Client example.

ex_ndcf_ImageViewer cs_win_app C# example image viewer uses DCS library

ex_ndcf_query_scu cs_win_app C# DICOM Query Retrieve or MWL Client example.

ex_jdcf_create_fileset java_app Create a DICOMDIR index file from a collection of DICOM

files

ex_jdcf_dcm2jai java_app Java example app that converts DICOM files to one of the

supported JAI file types

ex_jdcf_dcmview java_app Java example app that displays a DICOM image using the JAI

API’s

ex_jdcf_dump java_app Java example app that prints the contents of a DICOM file to the

console

ex_jdcf_filter java_app Java app that reads a DICOM file, applies filters and writes a

new file

ex_jdcf_HelloWorld java_app Java test application for DCF common services

ex_jdcf_jai2dcm java_app Java example app that one of the supported JAI file types to

DICOM

ex_jdump_dicom_dir java_app Java example app that prints the contents of a DICOMDIR file

to the console.

ex_jecho_scu java_app Java client app that demonstrates use of VerificationClient and

DicomSCU in DCS lib

ex_jecho_scu_gui java_app Java client app that demonstrates use of VerificationSCU in

DCS lib

ex_jModPixelData java_app Java example app that reads a DICOM file, modifies the pixel

data, and creates a new file.

ex_jmpps_scu java_app MPPS Example with source code.

ex_jmwl_client java_app Example program showing use of DCS API’s to implement

MWL client

ex_jmwl_scp java_app Java server app that demonstrates use of QRServer and

DicomSCP in DCS lib

ex_jmwl_scu java_app MWL Example with source code.

ex_jnotify java_app Java test application for DCF common services

ex_jprint_client java_app Java client app that demonstrates use of PrintClient and DPS lib

 Page 9

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Name Component Type Description

ex_jprint_element_value java_app Example program showing very basic use of API’s to access

data in a DICOM file

ex_jprint_scu java_app Java client app that demonstrates use of PrintClient and DPS lib

ex_jqr_scp java_app Java server app that demonstrates use of QRServer and

DicomSCP in DCS lib

ex_jqr_scu java_app Query Example with source code.

ex_jquery_scu java_app Java DICOM Query Retrieve or MWL Client example

ex_jstorecommit_scp java_app Java server app that demonstrates use of StoreCommitServer

and StoreCommitSCP

ex_jstorecommit_scu java_app java example SCU for Storage Commitment SOP class

ex_jstore_client java_app Java client app that demonstrates use of StoreClient and

DicomSCU in DCS lib

ex_jstore_scp java_app Java server app that demonstrates use of StoreServer and

StoreSCP

ex_jstore_scu java_app Java client app that demonstrates use of StoreClient and

DicomSCU in DCS lib

jcds_client java_app Command line client for Configuration Data Service

OEMLOG_a java_lib LOG Adapter - java example implementation of LOG interface

1.3.2.4. Common Service Interface Libs

Name Component

Type
Description

APC cpp_lib_src Application Control - C++ interface to startup, shutdown, event handling, and

application configuration services - APC,LOG,CDS combine into

DCF_DCFCore library

CDS cpp_lib_src Configuration Data Service - C++ interface to hierarchical database for

application settings - APC,LOG,CDS combine into DCF_DCFCore library

DDS cpp_lib DICOM Data Service - C++ interface to store/retrieve/search mass storage

services for DICOM objects

LOG cpp_lib_src LOG - C++ interface to logging services - APC,LOG,CDS combine into

DCF_DCFCore library

DCF cs_lib DICOM Connectivity Framework Common Services (also contains CDS, APC,

and LOG interfaces)

APC java_lib Application Control - java interface to startup, shutdown, event handling, and

application configuration services

CDS java_lib Configuration Data Service - java interface to hierarchical database for

application settings

1.3.2.5. Common Service Implementation Libs

Name Component

Type
Description

APC_a cpp_lib Application Control Adapter - C++ reference implementation of APC interface

CDS_a cpp_lib Configuration Data Service Adapter - C++ reference implementation of CDS

interface

DDS_a cpp_lib DICOM Data Service Adapter - C++ reference implementation of DDS interface

Page 10

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

LOG_a cpp_lib LOG Adapter - C++ reference implementation of LOG interface

APC_a cs_lib Application Control Adapter - C# reference implementation of DCF.AppControl

interface

CDS_a cs_lib Configuration Data Service Adapter - cs reference implementation of CDS interface

DDS_a cs_lib DICOM Data Service cs library - C# interface to store/retrieve/search mass store

services for DICOM objects

LOG_a cs_lib LOG Client Adapter - C# reference implementation of DCF.LOGClient interface

APC_a java_lib Application Control Adapter - java reference implementation of APC interface

CDS_a java_lib Configuration Data Service Adapter - java reference implementation of CDS

interface

DDS_a java_lib DICOM Data Service Adapter - Java reference implementation of DDS interface

LOG_a java_lib LOG Adapter - java reference implementation of LOG interface

1.3.2.6. Application Support Libs

Name Component

Type

Description

com_lbs_LOG_a_SyslogOutput_a cpp_jni_lib JNI (Java Native Interface) implementation of Unix syslog

LOGOutput.

com_lbs_DCS_DicomTSCWCodec cpp_jni_lib JNI implementation for accessing JPEG compression libraries

boost_regex cpp_lib copy of boost regular expression source

DCFUtil cpp_lib DICOM Connectivity Framework - Utilities

DCF_gui cpp_lib Common look and feel elements for C++ CGIs

DCS cpp_lib DICOM Core Services - classes for accessing DICOM data and

communicating with DICOM devices

DIS cpp_lib DICOM Information Services - classes for HIS/RIS integration

- Modality Worklist, MPPS, etc.

DPS cpp_lib DICOM Print Services - classes for DICOM Print clients and

servers

DSS cpp_lib DICOM Store Services - classes for DICOM Store, Query

Retrieve, Storage Commit, DICOMDIR processing

IOD cpp_lib Information Object Description - auto-generated DICOM data

set wrapper classes

ljpeg12 cpp_lib IJG JPEG lib with lossless patch applied (12 bit build)

ljpeg16 cpp_lib IJG JPEG lib with lossless patch applied (16 bit build)

ljpeg8 cpp_lib IJG JPEG lib with lossless patch applied (8 bit build)

TSCW cpp_lib Transfer Syntax Codec Wrapper

TSCWAware cpp_lib Plugin to Aware, Inc. JPEG codec

TSCWIJG cpp_lib Plugin for IJG JPEG codec

TSCWJasper cpp_lib Plugin for JasPer JPEG codec

DCFCore cpp_lib_pkg DICOM Connectivity Framework Core interfaces library

package - contains DCF, LOG, CDS, and APC library

components

DCF cpp_lib_src DICOM Connectivity Framework - common modules

DCS cs_lib DICOM Core Services C# class library

DCS cs_lib DICOM Core Services C# class library

 Page 11

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Name Component

Type

Description

DDS cs_lib DICOM Data Service library - C# interface to

store/retrieve/search mass store services for DICOM objects

DIS cs_lib DICOM Information Services C# class library

DPS cs_lib DICOM Print Services C# class library

DSS cs_lib DICOM Store Services C# class library

IJGCodec cs_lib DICOM transfer syntax codec using IJG JPEG library

IOD cs_lib Generated IOD wrappers.

NDCDS cs_lib Configuration Data Service Adapter - cs reference

implementation of CDS interface

DCF java_lib DCF commonly used classes

DCS java_lib DICOM Core Services Java library

DCS java_lib DICOM Core Services Java library

DDS java_lib DICOM Data Service Java library - Java interface to

store/retrieve/search mass store services for DICOM objects

DIS java_lib DICOM Information Services Java class library

DPS java_lib DICOM Print Services Java class library

DSS java_lib DICOM Storage Services Java class library

GUI_helper java_lib Java GUI helper classes

IOD java_lib Information Object Description - auto-generated DICOM data

set wrapper classes

OEMPrinter java_lib OEM Printer - reference implementation of OEM Java printer

code

1.3.2.7. IDL Interface Libs

Name Component Type Description

DAPC idl_lib Distributed Application Control CORBA interface

DCDS idl_lib Distributed Configuration Data Service CORBA interface

DDCS idl_lib Distributed DICOM Core Services CORBA interface

DDPS idl_lib Distributed DICOM Print Services CORBA interface

DLOG idl_lib Distributed Log CORBA interface

Page 12

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

1.4. Platforms

The DCF defines a platform as the computer hardware, operating system, and any third-party tools or

programs that have been added to that system.

The currently supported platforms for the DCF and a brief description of each are shown in the

following table.

DCF code is designed for portability. Contact Laurel Bridge Software for information regarding

additional platform support.

Platform Name Operating

System(s)

Minimal OS

Version(s)

Processor Description

Linux_13_x86_gcc_493 Suse 13.x x86 Intel X86 PC compatible

Suse Linux 13.x

GNU C++ 4.9.3

Java SE JDK

Linux_13_x64_gcc_493 Suse 13.x x64 AMD 64 PC compatible

Suse Linux 13.x

GNU C++ 4.9.3

Java SE JDK

Centos_65_x64_gcc_482 Centos 6.5 x64 AMD 64 PC compatible

Centos Linux 6.x

GNU C++ 4.8.2

Java SE JDK

Windows_NT_5_x86_VisualStudio12.x Windows 10

Server 2008+

Windows 10 x86 Intel X86 PC compatible

Visual Studio 2013

Microsoft.NET2.0+

Java SE JDK

Windows_NT_5_x64_VisualStudio12.x Windows 10

Server 2008+

Windows 10 AMD64 AMD 64 PC compatible

Visual Studio 2013

Microsoft.NET2.0+

Java SE JDK

Windows_x86_VisualStudio16.x Windows 10

Server 2008+

Windows 10 x86 Intel X86 PC compatible

Visual Studio 2019

Microsoft.NET2.0+

Java SE JDK

Windows_x64_VisualStudio16.x Windows 10

Server 2008+

Windows 10 AMD64 AMD 64 PC compatible

Visual Studio 2019

Microsoft.NET2.0+

Java SE JDK

Note that the DCF uses Java 6 Update 32 (sometimes known as “1.6.0_32”) or newer updates. Java

versions older than Java 6 are not supported, while versions newer than Java 6 (e.g., Java 7, Java 8) are

not routinely tested but have been used in production environments. The Java SDK may be

downloaded from http://www.java.com/. Windows 10 and Server configurations assume current

updates applied.

http://www.java.com/

 Page 13

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

1.5. Systems

In practice, it is the OEM or system integrator who decides what a system is. For the purposes of DCF

development, we define a system as a specific platform running a specific set of application

components with their associated configuration data.

Giving a name to this particular combination of hardware, off-the-shelf software, DCF, and OEM

software provides a structure, which can be useful for defining tests. This structure helps during the

debugging, testing, and potentially field support phases, providing a more concise way of answering

common questions like: “What did the computer that xyz happened on look like?” or “What else was

running at the time that abc application failed?” or “Did we ever try the combination of applications x

and y with operating system z?”

The following table lists examples of systems that are defined for internal DCF testing at Laurel Bridge:

Name Description

all_servers_unix All DICOM servers running on Unix platform

all_servers_win32 All DICOM servers running on Win32 platform

dcds_server_unix Simple DCDS Server only configuration running on Unix platform

dcds_server_win32 Simple DCDS Server only configuration running on Win32 platform.

dcf_switch_unix DICOM Switch configuration with echo and store SCP’s running on Unix

platform

dcf_switch_win32 DICOM Switch configuration with echo and store SCP’s running on Win32

platform

jmwl_server_unix Java Modality Worklist server configuration running on Unix platform

jmwl_server_win32 Java Modality Worklist server configuration running on Win32 platform

jqr_server_unix Java QR server configuration running on Unix platform

jqr_server_win32 Java QR server configuration running on Win32 platform

jstorecommit_scu_agent_unix Java Storage Commitment SCU Agent configuration running on UNIX

platform

jstorecommit_scu_agent_win32 Java Storage Commitment SCU Agent configuration running on Win32

platform

jstorecommit_server_unix Java Storage Commitment Server configuration running on Unix platform

jstorecommit_server_win32 Java Storage Commitment server configuration running on Win32 platform

jstore_server_unix Java Store server configuration running on Unix platform

jstore_server_win32 Java Store server configuration running on Win32 platform

mwl_server_unix Modality Worklist server configuration running on Unix platform

mwl_server_win32 Modality Worklist server configuration running on Win32 platform

ndcds_server_win32 Simple DCDS Server only configuration running on Win32 platform.

nmwl_server_win32 C# Modality Worklist server configuration running on Win32 platform

nqr_server_win32 C# QR server configuration running on Win32 platform

nstorecommit_scu_agent_win32 C# Storage Commitment SCU Agent configuration running on Win32 platform

nstorecommit_server_win32 C# Storage Commitment Server with C# Storage Commitment SCU agent

configuration running on Win32 platform

nstore_server_win32 C# Store server configuration running on Win32 platform

only_jmwl_server_unix Java Modality Worklist server only configuration running on Unix platform

only_jmwl_server_win32 Java Modality Worklist server-only configuration running on Win32 platform

only_jqr_server_unix Java QR server only configuration running on Unix platform

only_jqr_server_win32 Java QR server-only configuration running on Win32 platform

Page 14

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Name Description

only_jstore_server_unix Java Store server only configuration running on Unix platform

only_jstore_server_win32 Java Store server-only configuration running on Win32 platform

only_nstore_server_win32 C# Store server only configuration running on Win32 platform

print_server_unix Print server configuration running on Unix platform

print_server_win32 Print server configuration running on Win32 platform

qr_server_unix Query Retrieve server configuration running on Unix platform

qr_server_win32 Query Retrieve server configuration running on Win32 platform

store_server_unix Store server configuration running on Unix platform

store_server_win32 Store server configuration running on Win32 platform

 Page 15

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

2. Installing the DCF

Follow the installation instructions that are located in the release notes file included on the distribution

CD; choose the appropriate instructions for your platform.

Note: If you are installing on Vista, Windows 7 or Windows 10, you may need to disable the UAC

(User Access Controls) in order for the DCF to be installed correctly.

2.1. Multi-user vs. Single-user Installation

The DCF is designed to allow multiple developers to share a single server or host computer. Sharing a

host is not particularly difficult for users of some applications such as compilers or client-side

programs. For developers trying to perform the entire cycle of develop, deploy, execute/test, and debug

for an entire suite of client and server applications, sharing a host can be a serious challenge. Files are

installed into either shared or per-user directories. The shared files are installed once, under the

directory given by the DCF_ROOT environment variable.

The DCF provides each developer a sandbox or virtual server environment that is isolated from all

other developers. The primary resources that must be isolated are files and TCP ports. Files that are

private to a developer are located under the directory given by the DCF_USER_ROOT environment

variable.

By setting environment variables appropriately all files can be installed under a single directory for a

simpler, single-user configuration. For Windows developers this single-user installation is much more

common.

TCP port numbers for one DICOM server and the Apache web server are automatically created for each

user. On UNIX hosts, the Apache web server port number is 1000 + user id. The DICOM port is 2000 +

user id.

For example, if your UNIX user id is 1004 then your private web server will listen on port 2004. The

first DICOM server (SCP) application that you run will listen on port 3004.

Of course, these port numbers are all specified in configuration files and can be manually set if needed.

If you need to run more than one DICOM SCP process concurrently, you can use the

$DCF_FUNC{euid_plus, n } macro to automatically generate additional port numbers based on the

current user’s effective id.

2.2. DCF Shared Files

The shared directory (DCF_ROOT), e.g., /opt/DCF-X.X.X, or a similar location contains the

following subdirectories:

Installed Directory Description

./bin Pre-built applications and scripts

./classes Pre-built Java class files

./lib Pre-built C++ shared libraries and .NET assembly dll’s

./lib/perl5 Perl modules used by various scripts

./doc

./doc/applications Documentation for applications

./doc/components

Page 16

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Installed Directory Description

./doc/components/java Generated documentation for Java components

./doc/components/cc Generated documentation for C++ components

./doc/components/cs Generated documentation for C#.NET components

./doc/components/idl Generated documentation for IDL components (CORBA

interfaces)

./doc/userguides Miscellaneous technical documents

./test Top of directory used for system test scripts and data

./test/cds Scripts and data files used to test CDS

./test/db Scripts and data files used to configure a sample

radiology database using postgreSQL.

./test/print Scripts and data files used to test DICOM print SCP and

SCU

./test/qr Scripts and data files used to test DICOM query retrieve

SCP and SCU

./test/store Scripts and data files used to test DICOM store SCP and

SCU

./test/worklist Scripts and data files used to test Modality Worklist, and

Modality Performed Procedure Step SCP and SCU

./include C++ include files. Each C++ library component listed

above has an include directory of the same name.

./oem Files that are extracted during per-user install

./devel Files used during development

./devel/lib Miscellaneous files to support development tools

./devel/lib/common Common templates for makefiles and other files

generated by dcfmake.pl

2.3. DCF Per-user Files

A per-user directory (DCF_USER_ROOT), e.g., /home/demo/DCF, or a similar location, contains the

following subdirectories:

User Directory Description

./devel Top of development tree

./devel/cfgsrc Configuration source – these are configuration files

that are not generated

./devel/cfggen Configuration files that are generated by dcfmake.pl or

update_cds.pl

./devel/cfggen/apps Application configuration files

 Page 17

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

User Directory Description

./devel/cfggen/apps/defaults Default application config files, generated by

dcfmake.pl when C++ or Java applications are built

./devel/cfggen/components Component configuration files – this is information

about library or other components that does not vary

depending on the application that uses the component.

There is a subdirectory below for each type of

component.

./devel/lib Miscellaneous files to support development tools

./devel/csrc C++ source code

./devel/cssrc C#.Net source code

./devel/jsrc Java source code

./devel/isrc Idl source code

./bin Contains binaries that are built by the user

./cfg Configuration data that is used at runtime. This data is

accessed by applications through the CDS interface.

This directory is populated initially by the

update_cds.pl utility, which combines files from

devel/cfgsrc and devel/cfggen.

./cfg/apps Application configurations

./cfg/components Component configuration – static information about

components – i.e., not dependent on application

context

./cfg/dicom Miscellaneous DICOM-related configuration files

./cfg/procs Processes – This directory contains files each of which

represents an active process or DCF application. When

an application starts, a working copy of the application

configuration (e.g., ./cfg/apps/defaults/store_server) is

made. This copy is called the “application instance

configuration”. (For process id 123, for example, this

is: ./cfg/procs/store_server.123.) Changes can be

made to data in this object, which may immediately

affect the associated process. This is how debug-flags

are updated on a running application. Applications are

not necessarily observing all data in their instance

configuration. Applications can observe data anywhere

in the CDS repository, not just /procs. (see

notify_example)

./cfg/systems Definitions of system configurations - used to start up

different combinations of processes for testing

./cfg/test Miscellaneous data used in testing

./cfg/tmp Miscellaneous temporary data

./tmp Temporary files created/used by DCF

Page 18

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

User Directory Description

./tmp/log Default location of log files

./tmp/scp_images Images sent to print_server and store_server go here

by default.

./tmp/job_images Images referenced by print jobs go here by default

./classes Contains Java classes that are built by the user

./lib Contains C++ libraries (.so files) that are built by the

user

./include Contains include files used or created by the user.

./httpd (may be in another location – e.g., /home/demo/httpd)

The per-user Apache web server uses this directory.

 Page 19

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

2.4. The DCF Remote Service Interface

The DCF provides a web browser interface for service and testing tools. You can use this interface in

your development or target environment, as is, or customize it to integrate with your own product’s web

service interface. All of the DCF web-based utilities are optional and are not required to implement

DICOM SCU or SCP applications. These web utilities can provide an easy way for developers or field

service engineers to view or modify your application’s configuration and operation and to aid them in

diagnosing problems that may occur – all that is needed is to run a web server and provide the web

utility scripts.

2.4.1. Running the Apache Web Server

If your system is not running a web server or if you have not opted to connect the DCF web pages and

cgi-bin executables into your system’s default web server environment, you should run the Apache web

server that has been configured for use with the DCF.

When the DCF was installed an Apache web server configuration was created. These files are in the

directory given by the environment variable DCF_HTTPD_ROOT. Each user on a multi-user

development host can have an independent web server. Start this server by typing the command

perl –S run_apache.pl

(See Appendix G: Using Perl with the DCF for information about invoking the Perl interpreter.)

2.4.1.1. Alternate Web Servers

It is possible to use the DCF with web servers other than Apache 2.2.16, such as Microsoft IIS or

Tomcat, but the DCF does not automatically come configured to use different web servers. If you want

to use a different web server, you have to configure your web server of choice to serve up the DCF’s

web pages and CGI scripts, and you may need to port the CGI scripts (which are written in Perl) to a

scripting language that your web server supports.

The configurations for the various web servers are too different to be described here, but the basic steps

are as follow:

1. Set the web server’s document root to point to the DCF’s web pages.

2. Configure the web server to parse the DCF’s CGI scripts. To use the existing Perl scripts, you

should configure the script interpreter to allow it to run Perl scripts. Alternatively, you can

translate the scripts into the scripting language of your choice and let your web server parse and

serve them up that way.

3. You may need to configure your server so it can run the CGI scripts in the DCF’s CGI-BIN

directory; for example, Apache uses the “ScriptAlias” directive to indicate the directory where

scripts are located.

4. You may wish to modify the Perl scripts “run_apache.pl” and “kill_apache.pl” to start

and stop your web server, if you wish to use those scripts in your operation of the DCF.

The primary files of interest are as follows:

• The static HTML pages for the DCF are located in the directory $DCF_ROOT/httpd/html, for

example, “C:\Program Files\DCF\httpd\html”.

• The CGI scripts are located in $DCF_ROOT/httpd/cgi-bin, e.g., “C:\Program

Files\DCF\httpd\cgi-bin”.

• You may wish to examine the web configuration file that comes with the DCF to understand

how Apache is configured; the file is “$DCF_ROOT/httpd/conf/httpd.conf”.

Page 20

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

2.4.2. Connecting to the web server

Point the web browser of your choice to the address for the per-user web server. For example:

http://yourhostname:2004 (where 2004 is replaced with the appropriate port)

or

http://yourhostname:8080 (typical for Windows installations)

If your Apache port is 2004, you should see the DCF Remote Service Interface. (Note: the typical

Apache port for Windows installations is 8080.)

2.4.3. The DCF Remote Service Interface

The DCF provides a web-based user interface (see below) for accessing various system functions. The

DCF Remote Service Interface is the top level or home page for DCF service facilities.

Figure 2: DCF Remote Service Interface Screen Example

The DCF Remote Service Interface typically contains the following links:

• Start with [DCF system config name]

(Choose a configuration)

• Clear Log Files (Remove all logs)

• Set Debug Flags

• Configure [DCF system config name]

• Edit Global Filter Sets

• Edit Extended Data Dictionary

• Shutdown DCF Processes

• View Log Files

• View Real-Time Log

• View/Edit Configuration Files

• View DCF Online Documentation

 Page 21

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

2.4.3.1. Start with … (Choose a configuration)

A collection of programs defined by a DCF system configuration file is started. There are several

system configurations defined which are used for testing. See the directory

$DCF_USER_ROOT/cfg/systems for files which define various system configurations.

Figure 3: Example – List of System Configurations to Start

The OEM can choose whether or not to start applications this way.

The program dcfstart.pl can be run on the command line to perform the same function (see

Section 2.4.4); alternately an OEM could start individual DCF or other processes in their own

initialization code.

For more information about starting and stopping systems see Chapter 7 (Using DCF System Manager

to control processes).

2.4.3.2. Shutdown DCF Processes

This will request that all programs started using the “Start with [config]” link are shut down.

The program dcfstop.pl can be run on the command line to perform the same function.

For more information about starting and stopping systems see Chapter 7 (Using DCF System Manager

to control processes).

2.4.3.3. Clear Log Files

Delete log files for processes that are not running, and truncate log files for processes that are running,

or for which the state of the writing process is not known (the .out.log files for example, since they do

not have a process id in their name).

Page 22

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

2.4.3.4. View Log Files

The files in the directory $DCF_USER_ROOT/tmp/log will be listed. (See the example in Figure 4

below.) If the process associated with a log file is currently alive, that will be noted. If the log file

contains any errors, that fact will also be noted – since parsing the files for errors may take a long time

if the files are large, you can click the checkbox at the top of the page to disable the parsing of the files

and speed up the operation. Clicking on a file will allow a single log file to be viewed in the browser.

If you are using the standard DCF logging components, there will be three types of log files that are

created in the log directory. All of these files have the same format but are produced in different

manners. Each process started by dcfstart has a log file with the extension “.out.log”. This file

contains the standard output of the program. Only output that was explicitly written to the standard

output will appear here. Typically, this file will be empty or nearly empty. The files with the extension

“.<pid>.log” contain the logger output for the program with the given process id. The file system.log

contains the output of the log server process, which may receive messages from multiple processes.

The default or reference implementation LOG adapter, as well as the dlog_server process, write log

files as plain text. Only when a file is selected for viewing is it formatted as html. Several features are

available while viewing log files. Many of the fields in the log header messages are displayed as html

hyperlinks. Clicking on this field will create a filtered display of the log file. For example, clicking on

the thread-id field in a message header will redisplay the log showing only messages from that thread.

Clicking on the component name will redisplay the log showing only messages from that component. A

link is available to return to the unfiltered log file.

If a process is running, it may be adding to its log file while you are viewing it. If you think there may

be more text available, click the refresh- or reload-page button on your browser.

 Page 23

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Figure 4: Example – Partial List of Log Files

Page 24

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

2.4.3.5. View DCF Real-Time Log

Start the real-time log viewer applet. This is a Java applet that runs on the browser and receives text

from the log server process. All messages sent to the log server are forwarded to the log viewer.

Note: you may have to add a security exception for “http://<hostname>:8080” via the Java

console Security tab to allow this applet to run on the system.

Figure 5: DCF Real-Time Log Screen Example

Note: The Real-Time Log is a Java applet. You will need to have Java installed to run the applet. See

Appendix H: Section 5, Java Applet Issues for information on possible applet issues.

 Page 25

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

2.4.3.6. View/Edit Configuration Files

View or edit objects in the CDS (Configuration Data Services) repository. The CDS is the facility in

DCF for managing configuration data. CDS configuration data is stored in the file system under the

directory: $DCF_USER_ROOT/cfg (a.k.a. $DCF_CFG). This interface allows you access to all the

configuration files used by the DCF and its components. Use of this interface is recommended

primarily for advanced users who are familiar with the DCF and its components, as there are many files

and each file has many configuration attributes in it. (For information on presenting a simplified view

of the configuration attributes, see Appendix H: Customizing the DCF Remote Service Interface.)

Figure 6: DCF Configuration Viewer Screen Example

Page 26

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

2.4.3.7. View DCF Online Documentation

This link leads to the online documentation page.

Figure 7: DCF Documentation Screen Example

The typical items listed under that page are:

• Release Notes – the release notes document for the current release

• Applications – man page style docs which are generated for each DCF application

• User Guides – tech notes and other higher level documents

• DICOM Documents – these are references to the DICOM standard and possibly other information.

They are provided as a convenience. These files are normally in .PDF format, so Adobe Acrobat

™ or some other PDF viewer must be accessible by the browser.

• Conformance Documents - these are copies of sample documents that may be used as the basis

for preparing a custom DICOM statement for a device or application. The DICOM Standard,

Chapter 2, provides the definitive examples for preparing a DICOM Conformance Statement.

• C++ Components – generated documents for C++ libraries (C++ Toolkits)

• Java Components – generated documents for Java libraries (Java Toolkits)

• C# Components – generated documents for C#.net assemblies (C# Toolkits)

• DICOM Data Dictionary – Selecting this link will display an auto-generated DICOM data

dictionary based on the current configuration on the system.

Component documentation for C++, Java, C# and other applications is generated using the Doxygen

program. Java documentation is also created using Javadoc.

 Page 27

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

2.4.3.8. Set Debug Flags

This allows debugging or verbosity settings to be adjusted for applications. Debug flags are a special

type of configuration data that are defined for each application; they are typically used to control

logging verbosity, but may also be used to enable special operating modes.

Figure 8: DCF Set Debug Flags Screen Example

Two selections are under the set debug flags link: Set application debug flags and Set

process debug flags. The first will save configuration data under the /apps CDS hierarchy. Any

program can be adjusted here and the settings will take effect the next time that program is run. The

second option allows you to make changes to the /procs CDS hierarchy. Only programs that are

currently running can be adjusted here. Changes will take effect immediately; the process does not need

to be restarted. This can prove valuable when it is desirable to adjust the logging verbosity of a server,

but the server cannot be shutdown or restarted at the time.

Either of the two “Set Debug Flags” selections prints a list of applications or processes (an application

that is running) – see Figure 9 below. Selecting an application or process will take you to a page which

prints the list of library components contained by that application, shown below in Figure 10. Selecting

one of the components will take you to a page that lists the available debug settings for that component.

Debug settings for components can be adjusted independently – see Figure 11 below. This can prove

valuable when it is desirable to have verbose output from one component but not from the others. (See

Appendix H: Customizing the DCF Remote Service Interface for information on presenting a simpler

interface for modifying the debug flags.)

Page 28

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Figure 9:Set Debug Flags Example – List of Running Processes

Figure 10: Set Debug Flags example – List of Components in Store SCP

 Page 29

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Figure 11: Set Debug Flags Example – List of Debug Flags in the DCS Component

2.4.3.9. Configure [DCF system config name]

This provides convenient access to a simplified view into the configuration data for the currently

selected system configuration. Each application may have a large configuration file that is created by

combining copies of each subcomponent’s configuration. Often, only a few items need to be edited.

(See Appendix H: Customizing the DCF Remote Service Interface for information on this option and

creating your own customized configuration screen.)

Page 30

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Figure 12: Modifying the Server Configuration

 Page 31

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

2.4.3.10. Edit Global Filter Sets

This option accesses an interface that allows the user to edit DICOM Filter Sets.

Figure 13: DCF Global Filter Set Editor Screen Example

A DicomElementFilter is used to modify DICOM elements in a DIMSE message. For example, you

can specify that a certain tag is always changed to another value or that the data element with a

particular tag is removed from the message. Many ways to use the DicomElementFilter are

provided and not all are detailed here.

The DicomElementFilter has five versions. The “Copy Filter” version allows you to copy elements

in a DIMSE message. The “Remove Filter” will remove elements from a message, while the

“Add/Replace Filter” will add or replace elements in a message, and the “Modify Filter” allows you to

modify the data in a DIMSE message via regular expressions. The fifth version, “Element Filter (full)”,

allows you to do all of these things. As the fifth is the most general, its basic functionality is described

here, with the understanding that these descriptions apply to the other options, each of which has a

subset of these capabilities.

The “Element Filter (full)” has six tables each displaying a list of elements. These elements are checked

against the elements in a message and applied accordingly to the rule for the section where they are

listed. (As you enter data into the filter's fields, please note that the rules are applied top-to-bottom.

That is, the results of the first filter's actions are passed to the next filter, e.g., the results of the elements

that are copied will then be processed through the list of elements that are to be removed, etc.)

Elements may be:

• matched

• copied

• removed

• removed if null

• added and/or replaced

• edited and moved

The various types of DicomElementFilter have subsets of these capabilities; for example, the Copy

Filter will only include the capability to copy data.

Page 32

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

The Mapping List Filter (DicomMappingListFilter) is a specialized and more advanced version of

the Add/Replace Filter. It provides an efficient way to match a large number of possible values for a

particular attribute (key tag) and then add/replace one or more elements, depending on the key tag value

(or values) that is matched.

The Element Composer Filter (DicomElementComposerFilter) is a more advanced version of the

Element Filter. It uses regular expressions to parse input elements, and then the captured results from

the inputs can be put back together to create new output elements.

The Pixel Value Shift Filter (PixelValueShiftFilter) can be used to shift the bits in pixel data

values left or right, for image data manipulation. (This filter is primarily used in unit/integration tests

for data-set and DIMSE-message filtering, but it is also available for real world image data

manipulation.)

The Planar Configuration Convert Filter (DicomPlanarConfigConvertFilter) is used to convert

color pixel data from interleaved (RGB RGB RGB…) to planar (RRR…GGG…BBB…), or vice versa.

Note that this filter will not modify the data unless samples-per-pixel is greater than 1, and bits-

allocated is 8. This filter will recognize pixel data that is stored in attribute 7FE0,0010 in the top level

data set, as well as pixel data that is contained in either of the attributes Basic-Grayscale-image-

sequence or Basic-Color-image-sequence.

The Pad Value Filter (PadValueFilter) can be used to pad a string value with a null, a space character,

or a user-specified character until the string is a given length. For example, you can make sure that the

Accession Number is a certain length and has leading zeroes, or make sure that the Patient Name is

padded with spaces until it is a certain length.

Note: The Filter Set Editor is a Java applet. You will need to have Java installed to run the applet. See

Appendix H: Section 5, Java Applet Issues for information on possible applet issues.

2.4.4. The DCF Command-line Operation

It is possible to run DCF examples without running Apache and without using the web-based service

interface. A web service interface is provided as a simple way to start/stop the servers that are used by

the DCF; it also provides a convenient way to access documentation, configure applications or

components, etc. But it is not necessary for the DCF’s operation, and this section will explain how you

can start and stop DCF components from the command line.

Look in the %DCF_ROOT%/cfg/systems subdirectory; you will see the configuration files and scripts

that are used to start various DCF servers and applications. These configurations can be used without

the web interface as follows:

To “Start” or “Restart” from a Windows DCF command prompt, type:

perl –S dcfstart.pl -cfgfile "%DCF_CFG%/systems/config_file_name"

- or -

perl –S dcfrestart.pl -cfgfile "%DCF_CFG%/systems/config_file_name"

Example:

perl –S dcfrestart.pl -cfgfile "%DCF_CFG%/systems/store_server_win32.cfg"

To stop the running servers, you would type in a dcfstop command at a DCF Command Prompt:

perl –S dcfstop.pl

This sort of common activity is often done more easily through the web service interface, which is one

reason that option is provided.

 Page 33

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Note that similar commands may be used under Windows or UNIX OSes; syntax changes slightly for

path and environment variable specification.

For more information about starting and stopping systems see Chapter 7 (Using DCF System Manager

to control processes).

(Appendix D: Section 1.2 shows an example of starting a configuration of DCF servers from the

command line to run a Java app from the command line.)

(Appendix G: has helpful information about invoking the Perl interpreter.)

2.5. Using Multiple Versions of the DCF

During active development using the DCF, you might find yourself in a situation in which you are

using multiple versions of the toolkit. For example, you might be doing maintenance – such as bug

fixing – on a product built with one version of the DCF, and doing development on a new product that

uses another version of the DCF. It is generally not a problem to develop and test with multiple

versions of the DCF.

2.5.1. UNIX

On UNIX systems, the OS itself separates the installations and their environments, providing discrete

development environments for each version of the DCF.

2.5.2. Windows

For Windows platforms the situation is slightly more complicated. After DCF version 3.2.0, it is

possible to install multiple versions of the DCF on a Windows box and have them operate separately

and discretely.

DCF versions 3.2.0 and later can be installed concurrently on a single system. For example, you can

have DCF 3.2.0 and DCF 3.2.2 installed on the same box – they will be installed in parallel separate

directories in Program Files and will have parallel options on the Start menu. You can also

install DCF 3.2.0 (or later) alongside a single copy of an older version of the DCF, e.g., you can have

both DCF 2.8.8 and DCF 3.2.2 since they will be installed in parallel separate directories.

Please note that you can not use the DCF installer to install multiple copies of older versions of

the DCF (before DCF 3.2.0) at the same time on a Windows system. If you attempt this, the second

copy will overwrite the previous copy, and you will be unable to access the Start menu options or

otherwise use the previous copy.

Certainly the safest approach to developing and testing with multiple versions of the DCF is to install

each version on its own dedicated system. Certain library components that are used by C# applications

may present difficulties, usually when a wrong version has been unregistered by the operating system.

2.5.3. Testing

To test an application built on a box with multiple versions of the DCF installed, you just need to make

sure that you are using the correct environment variables that refer to the DCF. Setting the environment

is done most easily by selecting the “DCF Command Prompt” option on the Start menu for the

desired version of the DCF – this action correctly sets the environment used for all commands that are

run inside that command prompt window.

Page 34

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

2.6. Windows x86 vs. x64

The DCF is available in a 64-bit (x64) and 32-bit (x86) versions. The x86 version of DCF can be used

by a developer on a Windows x64 Operating System. However, .NET projects built with x86 DCF

must have the target machine architecture set to “x86” and not “AnyCPU” in order to run on the x64

development machine.

If you took your AnyCPU .NET project (which was built on x64 OS) and ran it on a x86 machine, it

would work. When compiling on a x64 development machine and the target platform is AnyCPU, then

you are always going to run the 64-bit CLR even if you launch your .NET app from the 32-bit

command shell. The AnyCPU .NET project that is referencing x86 DCF .NET assemblies, it will fail

when run. This is because DCF uses IN_PROC COM dll’s that was compiled for x86. By setting your

projects target to “x86” you effectively are forcing the 32-bit CLR to run, which means any native

COM objects that were compiled for x86 will run. The .NET project would run if deployed to a

Windows x86 Operating System.

If you want to target x64 Windows Operating systems, use an x64 DCF toolkit, where all the native

code is compiled for x64.

 Page 35

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

3. DICOM Programming Overview

The DCF supports DICOM programming using numerous components, which are available to

programmers on various platforms using various languages. Most DICOM programmers will interact

with the classes described in this chapter.

For specific and detailed examples of using these classes in C++, Java, and C#, see the language-

specific chapters and associated examples, or the various example source files and their associated

online documentation included with the DCF toolkit installation.

Beyond the examples in the language chapters of this guide, the complete working source code for

examples of common DICOM integration tasks are found in the following installation directories:

C++: $DCF_ROOT/devel/csrc/com/lbs/examples

Java: $DCF_ROOT/devel/jsrc/com/lbs/examples

C#: $DCF_ROOT/devel/cssrc/com/lbs/examples

For additional information, see also Chapter 8 – The DCF Development Environment.

Refer to the DICOM Standard, Chapter4 for DICOM service class specifications:

A Service Class Specification defines a group of one or more SOP Classes related to a

specific function which is to be accomplished by communicating Application Entities. A

Service Class Specification also defines rules which allow implementations to state some

pre-defined level of conformance to one or more SOP Classes. Applications may conform

to SOP Classes as either a Service Class User (SCU) or Service Class Provider (SCP).

Note: Such interaction between peer Application Entities work on a 'client/server model.'

The SCU acts as the 'client,' while the SCP acts as the 'server'. The SCU/SCP roles are

determined during Association establishment.

3.1. Core DCF DICOM classes

3.1.1. Element related

Classes such as DicomElement, DicomDataSet, and DicomDataDictionary are found in the

DCS library in various forms. For details, see the online documentation for these classes.

3.1.2. Association Manager

AssociationManager is the daemon for DICOM server side associations. AssociationManager

listens to a configurable TCP port for incoming DICOM association requests. There can be multiple

AssociationManager objects in a single process, each listening on its own port.

One object that implements the AssociationConfigPolicyManager interface may be registered with

an AssociationManager. This object is called at the start of an association. The

AssociationConfigPolicyManager can examine the connection request (A-Assoc-Rq-PDU) and

determine if the connection should be allowed, and what set of configuration parameters

(DicomSessionSettings in C# and Java) should be used. By default, for each association, the

AssociationManager creates an instance of AssociationAcceptor which handles communications for

that association in a separate thread.

Objects that implement the AssociationListener interface can be registered with an

AssociationManager. Each time an association or DICOM connection starts or ends, each registered

Page 36

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

listener is notified. At association startup, for example, an AssociationListener object might create

an SCP object of some type. This object may register as a PresentationContextAcceptor with the

AssociationAcceptor that is handling the connection. If negotiation succeeds, messages for a given

DICOM presentation context are dispatched to the appropriate SCP objects. In this way, complex

servers can be created that can handle multiple service classes on a particular connection.

Note: At the time of this writing the maximum number of concurrent associations that DCF allows

is 4096. In practice, system resources will limit your application to a lower concurrent association

count; you will probably run out of either threads or memory before you hit 4096 associations. We

recommend you make the MaxConcurrentAssociations parameter configurable from within your

application. Doing so will allow you to adjust it in the field as necessary.

3.2. Verification Service Class

3.2.1. Verification Client (SCU)

The VerificationClient is used to communicate with Verification Service Class providers or

servers. Verification service class is used to test connectivity between DICOM application entities

(AE’s).

The user requests VerificationClient to connect to the SCP and then send a C-Echo-Request

DIMSE message. The SCP is expected to respond by sending a C-Echo-Response DIMSE message

back to the client.

3.2.2. Verification Server (SCP)

VerificationServer provides an implementation of the Verification Service class. When the

verification SOP class is requested, the VerificationServer will create an instance of

VerificationSCP to handle that presentation context on that association.

3.3. Storage-related Service Classes

3.3.1. Store Client (SCU)

The StoreClient provides a batch interface for sending collections of images or other objects to a

Storage Service Class provider or server. StoreClient makes use of the StoreSCU class for lower

level functions.

Storage service class is used to transmit images or other DICOM objects (SOP instances) to an

archive or other storage device.

3.3.2. Store Server (SCP)

StoreServer provides an implementation of the Storage Service class. When one of the Storage

SOP classes is requested, StoreServer will create an instance of StoreSCP to handle that

presentation context on that association. The SOP classes that will be accepted can be configured on

a per association basis.

StoreServer receives SOP instances from a Store SCU.

The DicomDataService::storeObject() method is invoked for each image that is received.

By providing a DicomDataService adapter, an OEM can see every image/object that is received,

 Page 37

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

without needing to be involved with the details involved with handling concurrent DICOM

associations.

3.3.3. Storage Commitment Server (SCP)

For Java and C#:

The StoreCommitSCP, StoreCommitServer provide the services described below for the

DICOM Storage Commitment Push Model SOP class. See the online docs for additional details.

Overview for C++:

StorageCommitmentServer provides an implementation of the Storage Commitment

Service class. When the Storage Commitment SOP class is requested (Push-Model only),

StorageCommitmentServer will create an instance of StorageCommitmentSCP to handle

that presentation context on that association.

It receives Commitment requests from a Storage commitment SCU.

The DicomDataService::commitRequestReceived() method will be invoked when an

N-Action-Request DIMSE message is received from the SCU.

The acceptStorageCommitment() method can be invoked on

StorageCommitmentServer to forward "commit-completed" messages back to the

requesting SCU. If the SCU is still connected, and the configuration allows, the N-Event-

Report-Request message will be sent to the SCU over the same association. Otherwise,

StorageCommitmentServer (or StorageCommitmentSCP) will create a new association on

which to send the notification.

3.3.4. Storage Commitment Client (SCU)

For Java and C#:

The StoreCommitSCU provides the services described below. See the online docs for

additional details.

Overview for C++:

The StorageCommitmentClient is used to communicate with Storage Commitment Service

Class providers or servers.

Storage Commitment service class is used to allow one device to request that another device

accept long term storage responsibility for images or other SOP instances.

The DicomDataService::commitRequestSent() method will be invoked once for each

SOP instance that was referenced in an outbound N-Action-Request DIMSE message.

The DicomDataService::commitRequestAcknowledged() method will be invoked when

the N-Action-Response DIMSE message is received from the SCP.

3.3.5. Storage Commitment Client Agent

For Java and C#:

The StoreCommitSCUAgent, StoreCommitSCUAgentMessageHandler provide the

services described below. See the online docs for additional details.

Page 38

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Overview for C++:

The StorageCommitmentClientAgent is used receive storage commitment

acknowledgements from a Storage Commitment Service Class provider or server. Note that this

is the unusual case in DICOM where the SCU is also the association accepter.

The DicomDataService::commitRequestCompleted() method will be invoked when an

N-Event-Report-Request DIMSE message is received from the SCP.

3.4. Query/Retrieve (Q/R) Service Class

3.4.1. Q/R Client (SCU)

The QRSCU is used to communicate with Query Retrieve Service Class providers or servers.

Query Retrieve service class is used to query some type of a database for images or other SOP

instances. These objects may be retrieved using a C-Move request (in which case the Q/R server

functions as a Storage client, and sends images to the requestor, or to a third party over a new

association), or a C-Get request, in which case the images are transmitted back to the requestor over

the same association.

The Query is created from a data set provided directly by the user that is combined with elements

from an optional query configuration file.

The user can choose to receive responses either all at once, in a list, or as they arrive, by providing

an implementation of the DicomQueryListener interface (C++), or by implementing the

QueryListener interface (Java, C#).

In addition to sending DIMSE responses to a C-Move-Request, the SCP sends requested instances

to a Storage service class SCP over a new association. That store SCP may be on the same host as

the Query/Retrieve client. Currently, support for C-Get in QRSCU is disabled in the C++ version.

Contact Laurel Bridge Software if you wish to use this functionality.

A QRSCU user can also provide a DicomDataService adapter that is invoked each time the local

StoreServer receives an image.

3.4.2. Q/R Server (SCP)

QRServer provides an implementation of the Query Retrieve Service class. When one of the Query

Retrieve SOP classes is requested, QRServer will create an instance of QRSCP to handle that

presentation context on that association. The SOP classes that will be accepted can be configured on

a per association basis.

QRServer receives C-Find, C-Move or C-Get requests and sends responses. For C-Move and C-

Get requests, matching instances are sent by a StoreClient, to a remote Store SCP.

QRServer uses the DDS::DicomDataService interface to communicate with the data base

provider. The OEM typically provides a custom implementation of DicomDataService, which

searches their database. The DicomDataService adapter implements the findObjects()

methods. These methods take a query identifier (QRIdentifier), and return either a list of

matching data sets, or references to matching instances in mass storage. QRSCP takes that

information and forms the appropriate DIMSE response messages, and/or StoreClient requests.

 Page 39

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

3.5. Modality Worklist Service Class

3.5.1. MWL SCU

The MWLSCU is used to communicate with Modality Worklist (or General Purpose Worklist) Service

Class providers or servers.

The Modality Worklist service class is similar to Query/Retrieve in that C-Find-Request DIMSE

messages are sent to find objects on the server and matching objects are returned in one or more C-

Find-Response messages. It is different from Query/Retrieve in that different SOP classes are

requested and only the C-Find operation is supported.

You can also use the MWLSCU class for General Purpose Worklist by setting the SOP class UID in

your Association Info object to General Purpose Worklist.

There are also examples in the C# examples directory called ex_nmwl_scu and in Java examples

called ex_jmwl_scu that may be modified to do GPWorklist instead of MWL. There are high

level GP objects in the LaurelBridge.DIS namespace (.NET toolkit) such as
GPPerformedProcedureStep.cs, GPScheduledProcedureStep.cs,

GPWorklistItem.cs that wrap up some of the IOD modules that may be needed for General

Purpose Worklist.

3.5.2. MWL Server (SCP)

MWLServer provides an implementation of the Modality Worklist (or General Purpose Worklist)

Service class. When one of the Worklist SOP classes is requested, MWLServer will create an

instance of MWLSCP to handle that presentation context on that association. The SOP classes that

will be accepted can be configured on a per association basis.

This is similar to QRServer, except that different SOP classes are requested, and only the C-Find

operation is supported. MWLServer is easily customized by providing a DicomDataService

implementation.

3.6. Modality Performed Procedure Step Service Class

3.6.1. MPPS Client (SCU)

The MPPSSCU is used to communicate with Modality Performed Procedure Step Service Class

providers or servers.

MPPSSCU creates and updates instances of Modality Performed Procedure Step objects. It sends N-

Create and N-Set DIMSE messages to an MPPS SCP or server. The user instructs the MPPSSCU to

connect to the SCP, and uses the n_set() and n_create() methods to send the appropriate

DIMSE messages.

3.6.2. MPPS Server (SCP)

MPPSServer provides an implementation of the Modality Performed Procedure Step Service class.

When the MPPS SOP class is requested, MPPSServer will create an instance of MPPSSCP to

handle that presentation context on that association. The SOP classes that will be accepted can be

configured on a per association basis.

Page 40

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

MPPSServer is easily customized by providing a DicomDataService implementation.

MPPSServer receives N-Set and N-Create DIMSE messages from MPPS SCUs. The

DicomDataService interface is used to forward these requests to the server application. The user

provides a DicomDataService adapter. When N-Create is received, the

DicomDataService::storeObject() method is invoked. When N-Set is received,

DicomDataService::updateObject() is invoked.

3.7. Print Service Class

3.7.1. Print Client (SCU)

PrintClient provides a batch job interface to allow clients to specify DICOM print requests in a

simplified structured manner. The user provides a full description of the print job to PrintClient.

PrintClient then handles the complexities of sending the various DIMSE request messages to

complete the job.

The user can provide an implementation of the PrintClientListener interface, which will be

called each time either the Printer or PrintJob status changes.

3.7.2. Print Server (SCP) – (C++ only)

PrintServer provides an implementation of the Print Service class. When one of the Print SOP

classes is requested, PrintServer will create an instance of PrintSCP to handle the Print

Management meta-SOP-class or the Printer SOP class. The SOP classes that will be accepted can be

configured on a per association basis.

The PrintServer class handles all complexities of the DICOM print protocol from the server’s

perspective. After the various DIMSE message transactions (which describe one or more films)

have been completed, PrintServer forwards the composite print job information to an

implementation of the Printer interface. The implementation of the Printer interface communicates

status information back to PrintServer via the PrinterListener and PrintJobListener

interfaces.

3.8. DICOM File (Media Storage) Services

3.8.1. DICOM File Set Reader (FSR role)

The DicomDirectoryRecord and DicomDir classes along with DicomFileInput provide

read functionality for DICOM File Sets, as defined in Part 10 of the standard. This amounts to

reading a DICOMDIR file.

3.8.2. DICOM File Set Creator and Updater (FSC and FSU roles)

The DicomDirectoryRecord and DicomDir classes along with DicomFileOutput provide

write and update functionality for DICOM File Sets, as defined in Part 10 of the standard. This

amounts to creating and updating a DICOMDIR file.

 Page 41

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

4. C++ Programming Examples

This section presents a variety of C++ programming examples for common DICOM integration tasks.

See $DCF_ROOT/devel/csrc/com/lbs/examples/ for the complete working source code for

these and additional examples.

This chapter includes the following sections:

• Running Example Servers provides notes on starting pre-installed applications

• DICOM Programming Examples section shows how simple DICOM related tasks are performed.

• Common Services Examples section covers use of the DCF framework services.

• Advanced DICOM Programming Examples covers more complex server concepts.

For additional information, see also

• Chapter 8 – The DCF Development Environment,

• Chapter 13 – Deploying a DCF-based application.

4.1. Running Example Servers

Using the DCF Remote Service Interface to run the DCF tools and/or servers generally makes running

these examples easier. Taking this approach allows convenient access to tools for starting and stopping

DCF server processes, viewing log files, and controlling trace/debug settings. Alternately, you may

also manually run these servers from a DCF Command Prompt. Three approaches are described below.

4.1.1. Using the Web Service Interface

This approach allows you to conveniently control DCF servers, configuration, logging, etc. from a web

browser that has connectivity to the system running the servers.

In a Windows environment invocation is all handled for you by the “DCF Remote Service Interface”

startup script:

Select “Start” → “All Programs” → “DICOM Connectivity Framework” →

“DCF Service Interface”

This runs an Apache web server in its own window and invokes the default browser client to display the

“DCF Remote Service Interface”.

Alternately, if you need a manual approach to start this interface, then open a DCF command window,

type “run_apache.pl”, and then use your favorite web browser to browse to “localhost:8080”, which

will display the “DCF Remote Service Interface” page.

Once the “DCF Remote Service Interface” is available in your web browser, select “choose a

configuration”, then from that page select a server to start. For instance, select

“store_server_win32.cfg” to start a generic DICOM store server.

4.1.2. Using a DCF Command Prompt – w/Common Services

This approach produces the same result as above for starting a generic DICOM store server, but without

using the web browser service interface. This example approach does use the DCF Common Services,

which provide configuration and logging servers to support the application.

Open a DCF command prompt:

Page 42

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Select “Start” → “All Programs” → “DICOM Connectivity Framework” →

“DCF Command Prompt”

At the prompt, type:

perl –S dcfstart.pl -cfg %DCF_cfg%\systems\store_server_win32.cfg

This command runs a few utility scripts up front, then the configuration and logging servers, and finally

dcf_store_scp. Use a similar command to start any of the other server configurations that are available.

At this point you may open another DCF command window to run other clients or servers, etc.

4.1.3. Using a DCF Command Prompt – w/Minimal Resources

This approach produces the same result as above for starting a generic DICOM store server, but without

using the web browser service interface and without using the DCF Common Services servers.

Open a DCF command prompt:

Select “Start” → “All Programs” → “DICOM Connectivity Framework” →

“DCF Command Prompt”

To just run the dcf_store_scp without any other supporting servers, do the following:

A) Edit the file %DCF_CFG%\apps\defaults\dcf_store_scp

Two changes are required and are highlighted in the code snippet below:

• Look for the text shown below and change value of “use_log_server” to FALSE or NO.

• Add the attribute “handle_external_shutdown_rq” to APC_a, if it is not there.

Set its value to FALSE or NO.

[cpp_lib/LOG_a/outputs]

[cpp_lib/LOG_a/outputs/server_output_1]

type = LOGSERVER

use_log_server = FALSE

...

[cpp_lib/APC_a]

debug_flags = 0

handle_external_shutdown_rq = no

save_proc_cfg_in_cds = no

save_exit_status_in_proc_cfg = no

delete_proc_cfg = yes

B) Run the app and tell it not to use the CFGDB server (DCDS_Server); to do this from a DCF

command prompt, type:

dcf_store_scp -no_dcds

Use a similar process to start any of the other servers that are available.

4.2. DICOM Programming Examples

4.2.1. Reading a DICOM file and extracting an element from the header

The following complete application demonstrates loading a DICOM encoded file, and extracting a value

for a particular element or attribute.

#include <iostream>

#include <DCS/DicomFileInput.h>

using namespace std;

 Page 43

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

//

// print a single dicom element from a file

//

int main(int argc, char** argv)

{

 try

 {

 if (argc != 3)

 {

 cerr <<

 << "use: print_element_value <dicom_filename> <element_tag as hhhh,hhhh>"

 << endl;

 return 1;

 }

 LBS::DCS::DicomFileInput dfi(*++argv);

 LBS::DCS::DicomDataSet ds;

 dfi.readDataSetNoPixels(ds);

 cout

 << ds.findElement(LBS::DCS::AttributeTag(*++argv)).getValueAsString()

 << endl;

 }

 catch (LBS::DCF::DCFException &e)

 {

 cerr << e << endl;

 }

 return 0;

}

This application can be built on any supported platform using the dcfmake.pl utility. You can use any

standard C++ build tools, as long as you direct them to the required include and library files. For

example, using GNU make on Linux build this application with the following makefile:

CCFLAGS=-g -Wall -DLINUX -I$(DCF_ROOT)/include -I/opt/omniORB-4.1.4/include \

 -D__OMNIORB4__ -D_REENTRANT -D__linux__ -D__OSVERSION__=2 -D__x86__

LDFLAGS= -g -Wall -L$(DCF_ROOT)/lib -L/opt/omniORB-4.0.7/lib \

 -lDCF_dcfcore -lDCF_dcfutil -lDCF_boost_regex \

 -lDCF_dcs -lomniORB4 -lomnithread -lpthread

all: print_element_value

print_element_value: print_element_value.o

 gcc $(LDFLAGS) -o print_element_value print_element_value.o

print_element_value.o: print_element_value.cpp

 gcc $(CCFLAGS) -c print_element_value.cpp

See $DCF_ROOT/devel/csrc/examples/print_element_value for the source code for this

example.

Note: This example intentionally does not configure the DCF common services – i.e., there are no calls

to LOG/CDS/APC adapter setup methods or to “Framework::initDefaultServices()”. This is to

demonstrate that a very simple application can be created with no reliance on the larger DCF

infrastructure.

Page 44

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

4.2.2. Creating a DICOM file that contains image data and patient demographics

One of the first things a DICOM developer often needs to do is to create an image file. DICOM defines

IODs – Information Object Descriptions – to represent images from different modalities. DICOM also

defines the encoding rules for communicating those IODs. An Image IOD can be written to the file

system for later use. Many systems store images to local mass storage as they are acquired from the

image generation source. Later these images are sent to DICOM printers or archive devices.

The following code fragment shows how DCF objects are used to create an image and store it to the

DicomDataService.

 1 //

 2 // create an image object

 3 //

 4 DCS::DicomObject image_object(UID_SOPCLASSXRAYANGIO, DCS::DCMUID::makeUID());

 5 dicom_data_set& image_ds = image_object.getDataSet();

 6 image_ds.insert(dicom_element(E_PATIENTS_NAME, "Doe^John"));

 7 image_ds.insert(dicom_element(E_PATIENT_ID, "12345"));

 8 image_ds.insert(dicom_element(E_PATIENTS_BIRTH_DATE, "19610517"));

 9 image_ds.insert(dicom_element(E_STUDY_ID, "4455"));

10 image_ds.insert(dicom_element(E_SERIES_NUMBER, "6677"));

11 // ... add more demographic fields ...

12 //

13 // now add image header fields

14 image_ds.insert(dicom_element(E_SAMPLES_PER_PIXEL, (UINT16)1));

15 image_ds.insert(dicom_element(E_PHOTOMETRIC_INTERPRETATION, "MONOCHROME2"));

16 image_ds.insert(dicom_element(E_ROWS, (UINT16)512));

17 image_ds.insert(dicom_element(E_COLUMNS, (UINT16)512));

18 image_ds.insert(dicom_element(E_PIXEL_ASPECT_RATIO, "1\\1"));

19 image_ds.insert(dicom_element(E_BITS_ALLOCATED, (UINT16)8));

20 image_ds.insert(dicom_element(E_BITS_STORED, (UINT16)8));

21 image_ds.insert(dicom_element(E_HIGH_BIT, (UINT16)8));

22 image_ds.insert(dicom_element(E_PIXEL_REPRESENTATION, (UINT16)0));

23 // create some bogus pixel data, and add to data set

24 unsigned int rows = 512;

25 unsigned int cols = 512;

26 unsigned int size = rows * cols;

27 BYTE value;

28 BYTE *p_pixel_data = new BYTE[size];

29 BYTE *p_tmp = p_pixel_data;

30 for (unsigned int row = 0; row < rows; row++)

31 {

32 for (unsigned int col = 0; col < cols; col++)

33 {

34 // really dumb way to draw a white grid on a black background

35 value = (((row % 20) == 0) || ((col%20) == 0)) ? 0xff : 0;

36 *p_tmp++ = value;

37 }

38 }

39 image_ds.insert(dicom_element(E_PIXEL_DATA, DCM_VR_OW, size, (void*)p_pixel_data)

);

40 //

41 // display the image info in a log message

42 //

43 LOG_INFO_MSG << "Image created by combo_example:\n"

44 << image_object << endl;

45 //

46 // save to local storage

 Page 45

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

47 //

48 DicomPersistentObjectDescriptor image_dpod;

49 LOG_INFO_MSG << "saving image to storage" << endl;

50 DDS::DicomDataService::instance()->storeObject(image_object, image_dpod);

51 LOG_INFO_MSG << "done: stored @" << image_dpod << endl;

The reference implementation of the DicomDataService adapter saves the data set as a DICOM format

file. An alternate implementation can be provided which stores the data using some other format or

mechanism. You could also use the DicomFileOutput class directly.

This code was taken from the C++ combo_example, which shows a combination of basic DICOM tasks

being performed by a demonstration program. The full source for the program can be found in

$DCF_ROOT/devel/csrc/examples/ex_combo.

4.2.3. Using the C++ StoreClient

4.2.3.1. Creating a job from DicomPersistentObjectDescriptors

The easiest way for a C++ application to send images or other DICOM objects to a storage service class

provider is to use the StoreClient object. The StoreClient object is a high level class that sends a

DICOM object to an SCP. The job, i.e., host, port, AE title, and location of DICOM object, should be

described by a StoreJobDescription object.

//

// initialize the StoreJobDescription

//

DSS::StoreJobDescrption job;

job.serverAddress(“archive:3004:StoreSCP”);

job.clientAddress(“StoreSCU”);

DicomPersistentObjectDescriptor dpod("","", “/tmp/test.dcm”, UID_TRANSFERLITTLEENDIAN);

DSS::StoreObjectInfo soi(dpod);

job.addObject(soi);

//

// create the StoreClient object, and submit the job!

//

DSS::StoreClient client;

DSS::StoreJobStatus status;

client.submitStoreJob(job, status);

4.2.3.2. Using C++ StoreClient to C-Store DicomDataSets in memory

4.2.3.2.1. Use Store SCU directly

The problem is that you give up the fairly complex functionality that StoreClient uses to come up with

the list of RequestedPresentationContext objects as well as a large quantity of job processing and status

reporting logic.

4.2.3.2.2. Create a "special" DPOD (DicomPersistentObjectDescriptor) and use StoreClient

The DicomPersistentObjectDescriptor is a generic way to describe a DicomDataSet that can be

retrieved using the DicomDataService::loadObject method. The special DPOD object will describe

your in-memory dataset. You then add functions to your DicomDataService adapter

(DDS_a) implementation to add/remove the dataset from the cache and override the "loadObject()"

Page 46

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

method of DicomDataService to return the cached dataset. StoreClient calls loadObject for each

instance in the StoreJobDescription.

We have described this approach here in detail and included source code to demonstrate what you need

to do.

You add two new methods to DicomDataService_a.h:

virtual LBS::DDS::DicomPersistentObjectDescriptor addDataSetToCache(const

LBS::DCS::DicomDataSet& dds)

 throw (LBS::DDS::DDSException);

virtual void removeDataSetFromCache(const LBS::DDS::DicomPersistentObjectDescriptor&

dpod)

 throw (LBS::DDS::DDSException);

You will also need to add a private std::map to hold the cache:

 std::map< std::string, LBS::DCS::DicomDataSet > ds_cache_;

Their implementations would look like this:

DicomPersistentObjectDescriptor DicomDataService_a::addDataSetToCache(const

DicomDataSet& dds)

throw(DDSException)

{

 DicomElement e = dds.findElement(E_SOPINSTANCE_UID);

 std::string sop_instance_uid= e.getValueAsString();

 std::string persistent_id = sop_instance_uid;

 e = dds.findElement(E_SOPCLASS_UID);

 std::string sop_class_uid = e.getValueAsString();

 //use the persistent_id as the key in the cache

 ds_cache_[persistent_id] = dds;

 //here we set a special persistent_info_ of "memory_ds"

 DicomPersistentObjectDescriptor dpod(sop_class_uid, sop_instance_uid,

persistent_id, "memory_ds");

 return dpod;

}

void DicomDataService_a::removeDataSetFromCache (const DicomPersistentObjectDescriptor&

dpod)

throw(DDSException)

{

 //use the persistent_id in the dpod as the key for deleting from the cache

 ds_cache_.erase(dpod.persistent_id_);

}

We also need to modify the private loadObject method in DicomDataService_a to use the special

DPOD cache we created:

LBS::DCS::DicomObject* loadObject(

 const LBS::DDS::DicomPersistentObjectDescriptor& dpod,

 const LBS::CDS::CFGGroup* p_filter_cfg,

 bool f_read_pixel_data)

 throw (LBS::DDS::DDSException);

DicomObject *DicomDataService_a::loadObject(

 const DicomPersistentObjectDescriptor& dpod,

 const CFGGroup* p_filter_cfg,

 bool f_read_pixel_data)

 throw (DDSException)

{

 DicomInput* p_source = NULL;

 DicomObject* p_obj = NULL;

 Page 47

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

 if (! dpod.persistent_info_.compare("memory_ds"))

 {

 std::map<std::string,LBS::DCS::DicomDataSet>::const_iterator itr =

ds_cache_.find(dpod.persistent_id_);

 if (itr != ds_cache_.end())

 {

 DicomDataSet dds = (*itr).second;

 //StoreClient will delete this pointer

 return new DicomObject(dds);

 }

 }

..... existing code

This example code is using the SOP instance UID as the key in a std::map, so you cannot put the same

dataset in the cache twice, and instead you might want to generate a unique key for each DicomDataSet

you insert. You also might want to change the map to use DicomDataSet pointers as the value instead

of DicomDataSet objects for efficiency.

You should also note that LBS::DSS::StoreClient will delete the DicomPersistentObjectDescriptor*

returned from loadObject(...), so you should not delete it anywhere.

Then, to test these modifications, you could modify dcf_store_scu.cpp to use this new cache instead of

loading them directly from the file system.

while (optind < argc)

{

 LBS::DCS::DicomDataSet ds;

 LBS::DCS::DicomFileInput* p_dfi = new LBS::DCS::DicomFileInput(argv[optind]);

 p_dfi->reference();

 p_dfi->readDataSet(ds);

 p_dfi->dereference();

 //notice we have to cast to our DDS implementation pointer to DDS_a*

 LBS::DDS_a::DicomDataService_a* p_dds_a = (LBS::DDS_a::DicomDataService_a*)

DicomDataService::instance();

 DicomPersistentObjectDescriptor dpod = p_dds_a->addDataSetToCache(ds);

 //need code to delete dpods somewhere in this example

 StoreObjectInfo soi(dpod);

 job.addObject(soi);

 optind++;

}

4.2.4. Using the C++ PrintClient

To send images from a C++ program to a DICOM Printer or Print “service class provider”, use the

PrintClient class. PrintClient provides a very high level interface to a DICOM print SCP. The

application developer is removed from the process of negotiating an association, sending DIMSE

messages, managing the complex relationships between objects in the normalized service classes, and

handling printer and print job status notifications. The sheets of images that are to be printed are

defined in an intuitive hierarchical structure. The PrintClient object handles the messy details of

DICOM Print.

The PrintJobDescription object contains basic attributes of the job, such as the server address, and

various job level options. Also included in the PrintJobDescription is a single

Page 48

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

PrintJobFilmSession object. This corresponds to the DICOM film-session object.

PrintJobFilmSession contains one or more PrintJobFilmBox objects. A PrintJobFilmBox

corresponds to the DICOM film-box object, which represents a sheet or film to be printed.

PrintJobFilmBox contains one or more PrintJobImageBox objects. A PrintJobImageBox

corresponds to a DICOM image-box and represents a single image to be placed somewhere on the film.

When the job has completed, a PrintJobStatus object is returned which summarizes the results of

the print operation.

The PrintClient also supports a listener or notification interface. If the user provides an object that

inherits from or “implements” the PrintClientListener interface, then notifications will be sent to

that object as DICOM print-job or printer status values change.

//

// initialize the PrintJobDescription

//

PrintJobDescription job; // describes the job we want to do

PrintJobFilmSession film_session;

PrintJobFilmBox film_box;

job.serverAddress(print_server_address);

job.clientAddress("DEMO");

job.requestPrintJobSOPClass(true);

job.pollPrintJob(true);

job.printJobPollRateSeconds(2);

job.jobTimeoutSeconds(30);

film_session.numberOfCopies("1");

film_session.printPriority("HIGH");

film_session.mediumType("BLUE FILM");

film_session.filmDestination("MAGAZINE");

film_session.filmSessionLabel("test");

film_session.memoryAllocation("0");

film_session.ownerId("DCF");

film_box.imageDisplayFormat("STANDARD\\1,1");

film_box.filmOrientation("PORTRAIT");

film_box.filmSizeId("14INX17IN");

film_box.magnificationType("NONE");

film_box.smoothingType("NONE");

film_box.borderDensity("0");

film_box.emptyImageDensity("0");

film_box.minDensity(0);

film_box.maxDensity(280);

film_box.trim("YES");

film_box.configurationInformation("NONE");

film_box.illumination(0);

film_box.reflectedAmbientLight(0);

film_box.requestedResolutionId("HIGH");

PrintJobImageBox image_box;

image_box.imagePosition(1);

image_box.polarity("NORMAL");

image_box.magnificationType("NONE");

image_box.smoothingType("NONE");

image_box.configurationInformation("NONE");

image_box.requestedImageSize("0");

image_box.reqdDecimatecropBehavior("DECIMATE");

image_box.imageDPOD(image_dpod);

film_box.addImageBox(image_box);

film_session.addFilmBox(film_box);

job.filmSession(film_session);

 Page 49

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

//

// create the PrintClient object, and submit the job!

//

DPS::PrintClient client;

DPS::PrintJobStatus print_job_status("1"); // id of this job is 1

LOG_INFO_MSG << "submitting print job:\n" << job << endl;

client.submitPrintJob(job, (PrintClientListener*)0, print_job_status);

LOG_INFO_MSG << "print_job_status after completion:\n" << print_job_status << endl;

This code was taken from the C++ ex_combo, which shows a combination of basic DICOM tasks being

performed by a demonstration program. The full source for the program can be found in

$DCF_ROOT/devel/csrc/examples/ex_combo.

4.2.5. Media Storage Application Profiles – DICOMDIR files

Currently, File Set Creator (FSC), File Set Reader (FSR), and File Set Updater (FSU) functionality is

provided by the classes DicomDir, DicomDirectoryRecord, and various DirectoryRecord

subclasses. These classes are all in the DSS (DICOM Store Services) library component.

The DicomDir class is used to provide access to DICOM Directories which are defined as part of the

media storage specifications (DICOM chapters: 10, 11, & 12). See Appendix B: Bibliography - The

DICOM Standard.

In its persistent form, a DICOM directory (usually in a file called “DICOMDIR”) contains some general

file-set and directory information attributes, followed by a sequence of directory records.

4.2.5.1. Example – Creating a DICOMDIR

Create a DICOMDIR which references two images for the same patient/study/series and save it to a

file.

A CD-R might be created from all files in the directory /tmp/cdrom-image. That directory would

contain the following files and subdirectories:

DICOMDIR - written by this example

PATIENT-A/STUDY-1/SERIES-2/IMAGE-1 - chapter 10 image file copied here

PATIENT-A/STUDY-1/SERIES-2/IMAGE-2 - chapter 10 image file copied here

 DicomDir dicom_dir;

 dicom_dir.fileSetId("EXAMPLE1");

 PatientDirectoryRecord& patient_dir = PatientDirectoryRecord::create(dicom_dir);

 patient_dir.patientName("patientA");

 patient_dir.patientId("12345");

 StudyDirectoryRecord& study_dir = StudyDirectoryRecord::create(patient_dir);

 study_dir.studyInstanceUid("1.2.3.4");

 study_dir.studyId("1");

 SeriesDirectoryRecord& series_dir = SeriesDirectoryRecord::create(study_dir);

 series_dir.modality("MR");

 series_dir.seriesNumber("2");

Page 50

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

 ImageDirectoryRecord& image_dir_1 = ImageDirectoryRecord::create(series_dir);

 image_dir_1.referencedFileId("PATIENT-A\STUDY-1\SERIES-2\IMAGE-1");

 image_dir_1.referencedSopsclassUidInFile(UID_SOPCLASSMR);

 image_dir_1.referencedSopinstanceUidInFile("1.2.3.1");

 ImageDirectoryRecord& image_dir_2 = ImageDirectoryRecord::create(series_dir);

 image_dir_2.referencedFileId("PATIENT-A\STUDY-1\SERIES-2\IMAGE-2");

 image_dir_2.referencedSopsclassUidInFile(UID_SOPCLASSMR);

 image_dir_2.referencedSopinstanceUidInFile("1.2.3.2");

 dicom_dir.save("/tmp/cdrom-image/DICOMDIR");

4.2.5.2. Example – Adding to a DICOMDIR

Create a DICOMDIR, and add patient/study/series records as needed from multiple image files. The

example shows a function that reads a data set from an image file, and updates the DicomDir object

appropriately. This might be called for example, once for each image filename on a command line.

The getXXDirRecord() methods search for matching records and create new ones if a match is not

found. Elements are copied from the image data set into the various record types according to

configuration settings.

 addImageToDirectory(DicomDir& dir, const string& image_fname)

 {

 DicomDataSet image_ds;

 DicomFileInput in(image_fname);

 in.readDataSet(image_ds);

 DicomDirectoryRecord& root = dir.getRootDirectory();

 PatientDirectoryRecord& patient = PatientDirectoryRecord::find(

 root,

 image_ds,

 true,

 true);

 StudyDirectoryRecord& study = StudyDirectoryRecord::find(

 patient,

 image_ds,

 true,

 true);

 SeriesDirectoryRecord& series = SeriesDirectoryRecord::find(

 study,

 image_ds,

 true,

 true);

 if (ImageDirectoryRecord::exists(series, image_ds))

 {

 throw DCSException("a matching image record already exists under that series");

 }

 else

 {

 ImageDirectoryRecord& image = ImageDirectoryRecord::create(

 series, image_ds, true);

 image.referencedFileId(image_fname);

 }

 }

 Page 51

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

4.2.5.3. Example – Reading a DICOMDIR

Read a DICOMDIR from a file, and traverse the contents.

Note: this produces similar output to the code “cout << dir;” but the method of descending into the

directory record objects is illustrated here.

 DicomDir dir("/cdrom/DICOMDIR");

 DicomDirectoryRecord& root = dir.getRootDirectory();

 DicomDirectoryRecordPtrList& root_records = root.getDirEntries();

 DicomDirectoryRecordPtrList::iterator itr = root_records.begin();

 string indent;

 while (itr != root_records.end())

 {

 DicomDirectoryRecord* p_dirrec = *itr++;

 displayDirRecord(*p_dirrec, indent);

 }

 void displayDirRecord(DicomDirectoryRecord& dirrec, string& indent)

 {

 cout << indent << "record type is: " << dirrec.directoryRecordType() << endl;

 cout << indent << dirrec << endl;

 string new_indent(indent);

 new_indent += "\t";

 DicomDirectoryRecordPtrList& lower_records = dirrec.getDirEntries();

 DicomDirectoryRecordPtrList::iterator itr = lower_records.begin();

 while (itr != lower_records.end())

 {

 DicomDirectoryRecord* p_child = *itr++;

 displayDirRecord(*p_child, new_indent);

 }

 }

See the online class documentation for DSS::DicomDir for additional information about DICOM

media storage.

4.3. Deploying a Simple Standalone DCF C++ Application

The following procedure shows a simple method of deploying a DCF C++ application to a Windows

host. The application (.exe), its required libraries (.dll), and configuration data can be installed into a

single directory on the target system. The application can then be run from the installation directory.

We’ll show the process of creating the install directory on your DCF developer box (the host with the

DCF toolkit installed). Once created, that install directory can then be copied to the target using any

number of methods: zip on your DCF developer box, and unzip on the target; or perhaps burn this

directory to a CD-ROM and then run directly from the CD on the target.

This example shows deploying the C++ dcf_filter example and dcf_dump. The process would be

modified somewhat for your own application.

Perform the following steps:

1. Open a DCF command window:
Select “Start” → “All Programs” → “DICOM Connectivity Framework” →

“DCF Command Prompt”

2. Create the test install directory:

Note: You could paste this text into a batch file and run it to automate this process.

Page 52

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

 REM ###

 REM ### create install dir

 REM ###

 mkdir DCF_test_cpp_install

 cd DCF_test_cpp_install

 REM ###

 REM ### copy required library files from %DCF_LIB% (../DCF/lib)

 REM ###

 copy %DCF_LIB%\DCF_DCFCore.dll

 copy %DCF_LIB%\DCF_ljpeg12.dll

 copy %DCF_LIB%\DCF_ljpeg16.dll

 copy %DCF_LIB%\DCF_ljpeg8.dll

 copy %DCF_LIB%\DCF_APC_a.dll

 copy %DCF_LIB%\DCF_CDS_a.dll

 copy %DCF_LIB%\DCF_LOG_a.dll

 copy %DCF_LIB%\DCF_boost_regex.dll

 copy %DCF_LIB%\DCF_DAPC.dll

 copy %DCF_LIB%\DCF_DCDS.dll

 copy %DCF_LIB%\DCF_DLOG.dll

 copy %DCF_LIB%\DCF_DCS.dll

 copy %DCF_LIB%\DCF_DCFUtil.dll

 copy %DCF_LIB%\DCF_TSCW.dll

 copy %DCF_LIB%\DCF_TSCWIJG.dll

 copy %DCF_LIB%\DCF_TSCWJasper.dll

 REM ### The Aware wrapper dll is needed only if using Aware’s JPEG libraries.

 REM ### Note the actual Aware JPEG library (awj2k.dll) must be purchased separately

 copy %DCF_LIB%\DCF_TSCWAware.dll

 REM ### copy required library files from %DCF_BIN% (../DCF/bin).

 REM ### These may exist in other places on the system, but copies

 REM ### are put here during DCF toolkit install for convenience,

 REM ### (Note omniORB dlls may not be required depending on the

 REM ### application and your DCF version)

 REM ### If you are building from a DCF VisualStudio8.x .NET toolkit:

 copy %DCF_BIN%\msvcp80.dll

 copy %DCF_BIN%\msvcr80.dll

 REM ### Note that the filenames may differ somewhat from what is specified here.

 copy %DCF_BIN%\omniORB414_rt.dll

 copy %DCF_BIN%\omniDynamic414_rt.dll

 copy %DCF_BIN%\omnithread34_rt.dll

 REM ###

 REM ### Copy the application that you want - for example,

 REM ### include both the C++ dcf_filter example, and the dcf_dump

 REM ### utilities.

 REM ###

 copy %DCF_BIN%\dcf_dump.exe

 copy %DCF_BIN%\dcf_filter.exe

 REM ###

 REM ### Create a minimal configuration directory.

 REM ###

 mkdir cfg

 mkdir cfg\apps

 mkdir cfg\apps\defaults

 mkdir cfg\procs

 REM ###

 REM ### Copy the license configuration file, and the application configs

 REM ### for the installed programs.

 REM ###

 copy %DCF_CFG%\systeminfo cfg\systeminfo

 copy %DCF_CFG%\apps\defaults\dcf_filter cfg\apps\defaults

 Page 53

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

 copy %DCF_CFG%\apps\defaults\dcf_dump cfg\apps\defaults

3. Create the media by which you will deliver the install directory

4. On the target machine do the following:

a) Unpack, copy, or otherwise make the DCF app install directory available. For example, copy

or unzip to C:\temp\DCF

b) From a command window, go to the install directory. For example, use C:\temp\DCF.
cd C:\temp\DCF

c) Set environment vars and run your apps (you could put these steps in a run_app.bat file).

 set DCF_CFG=C:\temp\DCF\cfg

 set DCF_LIB=C:\temp\DCF

 set DCF_TMP=C:\temp\DCF

 ### display input image (choose a DICOM file in the line below)

 dcf_dump \temp\test.dcm

Note that currently, all DCF standard C++ dll’s are prefixed with “DCF_”.

4.4. Common Services Programming Examples

4.4.1. C++ “hello world” Example Application Using the DCF

To demonstrate some of the capabilities of the DCF, you can create and run the most basic of code

examples: the “Hello World” program. The DCF “Hello World” program demo will make use of the

DCF development tools, as well as the common services APIs and implementations.

Change to the source directory for the C++ “hello world” example, then build and execute the example

application:

cd $DCF_ROOT/devel/csrc/examples/ex_hello_world

Build the application, if needed.

perl –S dcfmake.pl

Run the application.

ex_hello_world –no_dcds

The “–no_dcds” option allows the program to access configuration data directly from the filesystem.

From your web browser, select “View Log Files” from the DCF Remote Service Interface. Select the

log file for the ex_hello_world application and view the output.

To create the ex_hello_world application the following steps were followed:

1. Create a directory for the application

2. Create a component information file for the application

3. Create the source code for the application

4. Build the application

5. Update the configuration database

1. Create a directory for the new application component – in the DCF, every application or library is a

component, and has its own source directory.
mkdir $DCF_USER_ROOT/devel/csrc/examples/ex_hello_world

Page 54

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

2. Create a component information file in that directory. This file must be called “cinfo.cfg”. For

this example it contains the following:
#==

static information common to all instances of the ex_hello_world component

#==

[component_info]

name = ex_hello_world

type = cpp_app

category = examples

docfile = ex_hello_world.cpp

description = Example program that uses DCF common services to implement the classic

first application

[build_info]

gen_app_cfg = yes

bin_dir = .

[debug_controls]

debug_flag = df_TEST1, 0x10000, place holder for test 1 debug setting

debug_flag = df_TEST2, 0x20000, Do something cool

[required_components]

component = cpp_lib_pkg/DCFCore

component = cpp_lib/DCFUtil

component = cpp_lib/LOG_a

component = cpp_lib/APC_a

component = cpp_lib/CDS_a

component = idl_lib/DCDS

#==

per-instance information for the ex_hello_world component

#==

[ex_hello_world]

debug_flags = 0x00000

#==

The following sections allow the customization of the generated default

application configuration.

After the application configuration is created,

selected library component configuration settings can be overridden.

Note that this affects the settings for that library only within the context

of this application.

#==

[lib_cfg_overrides]

[lib_cfg_overrides/LOG_a]

use_log_server = FALSE

The file is in the DCF configuration file format, which provides for attributes, groups, and nested

groups.

Note: The easiest way to create the cinfo.cfg file for your application or library is to copy one from

a similar component, then edit as needed.

Explanation:

The first group [component_info] describes basic attributes of the component. The name

“ex_hello_world” is simply the file name. The component type is “cpp_app” which indicates

a C++ application.

Note: you can use dcfmake.pl to create applications in any directory, as long as you create a

cinfo.cfg file in that directory.

 Page 55

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

The group [debug_controls] is where the developer can add support for conditional logging

or other behavior specific to this component. Debug controls that are defined here can be accessed

via the web interface.

The [required_components] group specifies the components needed by this application.

The [ex_hello_world] group contains the instance configuration for the component. This data

is used directly in the example code.

3. Create the application source code

For this example, the file is called “ex_hello_world.cpp”.

#include <iostream>

#include <DCF/Framework.h>

#include "ex_hello_worldCInfoL.h"

using namespace LBS::ex_hello_world;

using namespace LBS;

using namespace LBS::DCF;

using namespace std;

int main(int argc, char **argv)

{

 int status;

 try

 {

 DCF::Framework::initDefaultServices(argc, argv);

 LOG_INFO_MSG << "Hello World!" << endl;

 LOG_DEBUG_MSG(df_TEST2) << "only print this if df_TEST2 is set" << endl;

 //

 // clean up

 //

 APC::AppControl::instance()->shutdown(0);

 status = APC::AppControl::instance()->exitStatus();

 }

 catch (DCF::DCFException& e)

 {

 LOG_ERROR_MSG(-1) << e << endl;

 status = -1;

 }

 if (status == 0)

 {

 cerr << "Test succeeded. See the generated log file for more information" << endl;

 }

 else

 {

 cerr << "Test failed. See the generated log file for more information" << endl;

 }

 return(status);

}

4. Build the application.

To build the application, simply type the command

perl –S dcfmake.pl

Page 56

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Invoking dcfmake.pl will perform the following steps for this example:

Read the cinfo.cfg file in the current working directory.

Read the component configuration for each required component in the cinfo.cfg. Component

configurations come from the $DCF_USER_ROOT/devel/cfggen/components directory.

That data was created when dcfmake.pl built those components.

Recursively read component configurations for other required components.

Generate the component configuration for this component. This data is written to the file
$DCF_USER_ROOT/devel/cfggen/components/cpp_app/ex_hello_world

Generate the application configuration for this component. This data is written to the file
$DCF_USER_ROOT/devel/cfggen/apps/defaults/ex_hello_world

Generate the ex_hello_worldCInfo.cpp source file in the current directory. The CINFO

class contains the debug-flag mask constants, as well as code to initialize and update the

debug flags value from the CDS database. CINFO also provides convenience mechanisms

for getting the instance configuration group for the component within a particular

application.

Generate the ex_hello_worldCInfo.h source file in the current directory. It contains the

component specific debug flag constants.

Generate the ex_hello_worldCInfoL.h source file in the current directory. It contains

various LOG macros that simplify checking debug flag settings, and provide message header

fields that remain constant for the component. See notes below in section 4.4.2.

Generate the make file. To avoid confusion with a handcrafted makefile, the file is called

makefile.dcf.

Invoke “make –f makefile.dcf”. Any arguments given to dcfmake.pl are forwarded to

make. After the make completes, the generated makefile is removed. You can have

dcfmake.pl leave the generated file by using the “-keep” option.

5. Update the configuration data service repository.

The developer can determine when to deploy any newly created or edited configuration data. This

can be useful if you are testing with non-default configurations and do not want the fact that you

have rebuilt something to affect your working configuration files. To update the data, execute the

command:

perl –S update_cds.pl

This will copy all files from the temporary areas $DCF_USER_ROOT/devel/cfggen and

$DCF_USER_ROOT/devel/cfgsrc to the working area: $DCF_USER_ROOT/cfg. As the files are

copied various macros are expanded, so, for example, the files in the working config can have the

correct port numbers, path names, etc.

The application is now ready to run!

4.4.2. Using the LOG interface – Logging from C++ programs

To access DCF logging facilities from C++, use the macros that are generated in the

<component_name>CInfoL.h (Component Information – Local) file. These include the macros:

LOG_INFO_MSG

LOG_ERROR_MSG

LOG_DEBUG_MSG

 Page 57

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

First, the LOG adapter must be initialized. Normally, all of the common services are installed at once,

during application initialization. This can be done with either the lines:

LBS::LOG_a::LogClient_a::setup(argc, argv);

LBS::CDS_a::CFGDB_a::setup(argc, argv);

LBS::APC_a::AppControl_a::setup(argc, argv);

LBS::LOG_a::LogClient_a::setup(argc, argv);

or

LBS::DCF::Framework::initDefaultServices(argc, argv);

All of the LOG macros establish a message header, and then evaluate to a C++ standard ostream

(output stream) object reference, so the interface is similar to using the familiar cout or cerr streams.

For example:

LOG_INFO_MSG << “this message will always be printed” << endl;

The endl is significant. When the ostream is flushed (using the standard endl or flush

manipulator), a message boundary is established, and all text between the beginning of the message and

the flush is logged with a single message header. This is preferable to having either a continuous stream

of output text, or adding a header to each line of text.

To print debug messages, use:

LOG_DEBUG_MSG(df_SOME_DEBUG_SETTING) << “the value of x is: “ << x

 << “ the value of y in hex is: “ << hex << y << endl;

The previous message will only be logged if the df_SOME_DEBUG_SETTING bit is set in the debug flags for

the component that contains the code. Note the use of the standard ostream insertion (<<) operators,

and the various manipulators (hex, endl).

Error messages are logged with:

LOG_ERROR_MSG(-1) << “an exception was caught: “ << exception << endl;

In that example, “exception” is some object that provides an ostream print method, i.e.,

friend ostream& operator<<(ostream&, SomeExceptionClass&);

4.4.3. Using the CDS interface

See language-specific class documentation for CDS.CFGGroup, CDS.CFGAttribute, CDS.CFGDB,

and CDS_a.CFGDB_a.

4.4.4. Using the APC interface

See language-specific class documentation for APC.AppControl and APC_a.AppControl_a.

4.5. Advanced DICOM Programming Examples

4.5.1. Writing a customized storage SCP

A common application of the DICOM protocol is in creating an image archive. An OEM may have

special requirements for how images and patient information are stored in a database. The DCF

provides APIs that are structured such that the OEM can easily customize the handling of image or

other DICOM datasets without needing to deal with the mechanics of negotiating associations, handling

sockets, PDUs or DIMSE messages.

Page 58

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

The DicomDataService interface provides the mechanism for customizing the handling of DICOM

image handling. Generic DCF protocol handling objects such as StoreSCP, QRSCP (Query Retrieve),

MWLSCP (Modality Worklist) invoke DicomDataService methods to access the local storage

facilities. The reference implementation adapter for the DicomDataService interface stores objects in

the file system and provides minimal searching capabilities to support testing. Other implementations or

adapters can be written that behave differently.

The directory $DCF_ROOT/devel/csrc/dcf_store_scp shows a simple storage server that sends

incoming DICOM objects to the file system using the default DicomDataService_a (DICOM data

service adapter) in $DCF_ROOT/devel/csrc/DDS_a. By installing a particular

DicomDataService_a, all incoming DICOM images are passed to the storeObject() method

defined in that class.

The source file dcf_store_scp.cpp contains the function main() which installs the

DicomDataService_a adapter, and enters the loop which waits for incoming DICOM associations.

int main(int argc, char *argv[], char *[])

{

 int status = -1;

 try

 {

 //

 // Quick check for -h or -help option

 //

 for (int i=0; i<argc; i++)

 {

 string arg = argv[i];

 if (arg.find("-h") == 0)

 {

 usage();

 exit(0);

 }

 }

 //

 // Setup adapters.

 //

 AppControl_a::setupORB(argc, argv);

 CFGDB_a::setup(argc, argv);

 AppControl_a::setup(argc, argv);

 LOG_a::LOGClient_a::setup(argc, argv);

 DPS::OEMPrinterInfo_a::setup(argc, argv);

 DDS_a::DicomDataService_a::setup(argc, argv);

 //

 // run Event loop returns in multi-threaded mode. The CORBA

 // services are enabled, and running in their own threads.

 //

 AppControl::instance()->runEventLoop(false);

 //

 // create an Association Manager

 //

 AssociationManager amgr;

 //

 // create a StoreServer object. It will register with the

 // AssociationManager and receive notifications when an

 // association is being started.

 //

 StoreServer store_server(amgr);

 Page 59

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

 // also create a Verification server object. It will handle the

 // Verification SOP class.

 //

 VerificationServer verification_server(amgr);

 //

 // start the Association Manager. It will wait for incoming

 // connections.

 //

 amgr.run();

 status = 0;

 }

 catch (IOTimeoutException& e)

 {

 LOG_FATAL_ERROR_MSG(-1) << (DCFException&)e << endl; // cast stops solaris CC error

 status = 1;

 }

 catch (IOException& e)

 {

 LOG_FATAL_ERROR_MSG(-1) << (DCFException&)e << endl;

 status = 2;

 }

 catch (DCFException& e)

 {

 LOG_FATAL_ERROR_MSG(-1) << e << endl;

 status = 3;

 }

 catch (std::exception& e)

 {

 LOG_FATAL_ERROR_MSG(-1) << "dcf_store_scp: caught unexpected C++ exception:\n" <<

e.what() << endl;

 return(4);

 }

 catch (...)

 {

 LOG_FATAL_ERROR_MSG(-1) << "dcf_store_scp: caught unknown exception:\n" << endl;

 return(5);

 }

 AppControl *p_appctrl = AppControl::instance();

 if (p_appctrl)

 {

 p_appctrl->shutdown(status);

 status = p_appctrl->exitStatus(); // may not be what we just gave it

 }

 LOG_INFO_MSG << "dcf_print_scp exiting with status:" << status << endl;

 return status;

}

The DicomDataService adapter class (DicomDataService_a) defines methods used by various

DICOM servers to access mass storage. The method storeObject() is invoked each time a C-Store-

Request is received on an association.

DicomDataService uses the singleton pattern to allow a single implementation object to provide

services for the process. When the abstract base class method DicomDataService::instance() is

invoked, the object returned is the sub-class or concrete implementation. The code throughout DCF that

uses the returned instance does not know or care what instance has been installed.

Page 60

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

The declaration of the storeObject() method is contained in the header file
DicomDataService_a.h

/**

* Store a DICOM object, and return the DicomPersistentObjectDescriptor which

* references that object. The initial reference count for the object will be

* one.

* @param obj reference to LBS::DCS::DicomObject whose data will be stored.

* @param dpod_ret reference to persistent object descriptor which will be

* filled in. The object may be retrieved later, using this descriptor.

* @throw LBS::DCS::IONoSpaceException if there is insufficient mass storage to save

* the object

* @throw DDSException if any other error occurs

*/

virtual void storeObject(

 const LBS::DCS::DicomAssociation& association,

 const LBS::DCS::DimseMessage& c_store_rq,

 DicomPersistentObjectDescriptor& dpod_ret)

 throw (LBS::DCS::IONoSpaceException, DDSException);

The implementation of the storeObject() method is in the file DicomDataService_a.cpp

void DicomDataService_a::storeObject(

 const LBS::DCS::DicomAssociation& association,

 const LBS::DCS::DimseMessage& c_store_rq,

 DicomPersistentObjectDescriptor& dpod_ret)

 throw (LBS::DCS::IONoSpaceException, DDSException)

{

 LOG_DEBUG_MSG(df_SHOW_GENERAL_FLOW) << "storeObject:" << obj << endl;

 try

 {

 LBS::DCS::DicomObject obj(c_store_rq.data());

 string sop_instance_uid =

 f_make_new_uids_ ? DCMUID::makeUID() : obj.sopinstanceUid();

 string persistent_id = image_directory_;

 persistent_id += "/";

 persistent_id += sop_instance_uid;

 persistent_id += ".dcm";

 dpod_ret.sopinstanceUid(sop_instance_uid);

 dpod_ret.persistentId(persistent_id);

 dpod_ret.persistentInfo(ts_uid_);

 DicomFileOutput dfo(dpod_ret.persistentId(), dpod_ret.persistentInfo());

 dfo.writeDataSet(obj.getDataSet());

 }

 catch (LBS::DCS::IONoSpaceException)

 {

 throw;

 }

 catch (LBS::DCF::DCFException& e)

 {

 ostringstream os;

 os << "storeObject failed:\n" << e;

 throw DDSException(os.str());

 }

}

The example storeObject() method performs the following steps:

• Print a log message, if the debug flag DF_SHOW_GENERAL_FLOW is set.

 Page 61

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

• Store the object to a DICOM format file using the DicomFileOutput class.

4.5.2. Writing a customized query retrieve SCP

As with the storage SCP in the previous example, customizing the standard query retrieve SCP can also

be done by providing a modified implementation of the LBS::DDS::DicomDataService interface.

While the DCF handles the complexity of association negotiation, receiving and sending DIMSE

messages and PDUs for multiple concurrent associations, the OEM need only provide an

implementation of the findObjects() or findObjectsForTransfer() methods in

DicomDataService.

The QRSCP (Query Retrieve Service Class Provider) invokes

DicomDataService::instance()->findObjects() when it receives a C-Find request. The

findObjects() method extracts the query attributes from the message, and performs the search,

using the mechanisms appropriate for the local database. For each matching entry, a DicomObject is

created and returned to QRSCP via the DicomQueryListener::returnQueryResult() callback

method. QRSCP will form the appropriate pending C-Find-Response DIMSE message and queue it for

transmission back to the SCU. When the matches are complete,

DicomQueryListener::queryComplete() is called; QRSCP will then send a C-Find-Response

with a final status back to the SCU.

If any exceptions are thrown by findObjects(), QRSCP will return an error status to the SCU.

The QRSCP invokes DicomDataService::instance()->findObjectsForTransfer() when it

receives a C-Move or C-Get request. The findObjectsForTransfer() method performs a similar

data base search, but only the storage information for the matched instances is returned – e.g., the

filename of the matching images. The QRSCP then manages sending the objects to the appropriate

destination using the Storage service class.

Below is an excerpt of the reference implementation of

DicomDataService_a : $DCF_ROOT/devel/csrc/DDS_a/DicomDataService_a.cpp

/**

* Find objects that match the given query criterion, and return the location

* in storage for those objects. This method is normally called by a Query Retrieve

* SCP when it receives a C-Move-Request or C-Get-Request. The QRSCP will handle the

* Store sub-operations when it gets back the list of matching instances.

* @param association the current DICOM association. This contains information about the

* client AE, negotiated contexts, etc.

* @param transfer_request the c-move or c-get request dimse message which contains the

* query criterion. This object

* contains both the command dataset, and the "data" dataset, which contains the

* query identifier.

* @param results reference to list which will be filled in with the matching objects.

* Only the information on how to load the object from storage is returned.

* @throw DDSException if an error occurs

*/

void DicomDataService_a::findObjectsForTransfer(

 const LBS::DCS::DicomAssociation& association,

 const LBS::DCS::DimseMessage& transfer_request,

 DicomPersistentObjectDescriptor::List& results)

 throw (DDSException)

{

 omni_mutex_lock lock(mutex_);

 findObjects(association, transfer_request, &results, (DicomQueryListener*)0);

}

Page 62

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

void DicomDataService_a::findObjects(

 const LBS::DCS::DicomAssociation& association,

 const LBS::DCS::DimseMessage& c_find_request,

 DicomQueryListener* p_listener)

 throw (DDSException)

{

 omni_mutex_lock lock(mutex_);

 findObjects(association, c_find_request, (DicomPersistentObjectDescriptor::List*)0,

p_listener);

}

. . .

void DicomDataService_a::findObjects(

 const LBS::DCS::DicomAssociation& association,

 const LBS::DCS::DimseMessage& query,

 DicomPersistentObjectDescriptor::List* p_result_dpods,

 DicomQueryListener* p_listener)

 throw (DDSException)

{

 DicomObject* p_test_object = 0;

 try

 {

 LOG_DEBUG_MSG(df_SHOW_GENERAL_FLOW) << "findObjects: query =\n" << query <<

endl;

 if (DCF_DEBUG(df_FORCE_ERROR_ON_FIND_OBJECTS))

 {

 throw DDSException("simulating error condition during findObjects");

 }

 //

 // prepare the query identifier by making a writable copy of it, and then

 // removing the query-retrieve-level element

 //

 DicomDataSet query_dataset(query.data());

 query_dataset.removeElement(E_QUERYRETRIEVE_LEVEL);

 //

 // search for matches in the list of stored objects.

 // This is a simple linear search using the compare() method

 // in DicomDataSet/Element/Sequence. Only the header portion

 // (everything up to 7FE0,0010) of each stored object is loaded

 // prior to comparing.

 //

 updateInstanceDPODList();

 DicomPersistentObjectDescriptor::List::const_iterator itr =

instance_dpod_list_.begin();

 while (itr != instance_dpod_list_.end())

 {

 const DicomPersistentObjectDescriptor& dpod = *itr++;

 p_test_object = loadObject(dpod , (LBS::CDS::CFGGroup*)0, false);

 if (p_test_object->getDataSet().compare(query_dataset))

 {

 LOG_DEBUG_MSG(df_SHOW_GENERAL_FLOW)

 << "DicomDataService_a::findObjects: adding DPOD for DicomObject to

result set:\n:"

 << *p_test_object

 << "\n" << dpod << endl;

 if (p_result_dpods)

 {

 p_result_dpods->push_back(dpod);

 delete p_test_object;

 }

 if (p_listener)

 Page 63

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

 {

 p_listener->returnQueryResult(*p_test_object);

 delete p_test_object; // make sure listener has his own copy of this!

 }

 p_test_object = 0;

 }

 }

 if (p_listener)

 {

 p_listener->queryComplete(0);

 }

 }

 catch (LBS::DCF::DCFException& e)

 {

 delete p_test_object;

 if (p_listener)

 {

 try

 {

 p_listener->queryComplete(2);

 }

 catch (...)

 {

 LOG_ERROR_MSG(-1) << "DicomQueryListener threw unexpected exception" <<

endl;

 }

 }

 if (p_result_dpods)

 {

 p_result_dpods->clear();

 }

 ostringstream os;

 os << "DicomDataService_a::findObjects failed:\n" << e;

 throw DDSException(os.str());

 }

}

The method findObjects() extracts the supported query attributes from the C-Find-Request message

and creates a query. The attributes supported are defined in a CFGGroup for each level. This example

forms the query as a DicomDataSet.

A local database is searched at the appropriate level, using the query created above. The

DicomDataSet::compare() method is used to compare the query data set with data sets created

from stored data at the selected level.

Note: this is not intended to show an efficient search algorithm!

Each matching data set is returned in the DicomObjectPtrList, which is simply an STL list of

pointers to allocated objects of type DicomObject.

To create an SQL query from the C-Find-Request, you might do something like:

QRIdentifier qi(c_find_rq.data());

string query = “SELECT * from PATIENT where “;

query += “patientId like \”“

query += qi.patientId();

query += “\””;

To create a DicomObject corresponding to a matching SQL result:

//Let’s say each result can be described as an array of strings, one per column in the

fetched result:

Page 64

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

string db_result[n_columns];

//The results as a list of pointers

DicomObjectPtrList result_list;

// create a DicomObject, and get a reference to the contained data set

DicomObject* p_result = new DicomObject();

DicomDataSet& dds = p_result->getDataSet();

// pull columns from known offsets in the result, and create elements

dds.insert(DicomElement(E_PATIENTS_NAME, db_result[0]));

dds.insert(DicomElement(E_PATIENT_ID, db_result[1]));

dds.insert(DicomElement(E_PATIENTS_BIRTH_DATE, db_result[2]));

// add the object to the list.

result_list.push_back(p_result);

See $DCF_ROOT/devel/csrc/examples/ex_qr_scp_sql for a more complete SQL example.

4.6. Using the C++ Modality Worklist examples

The dcf_mwl_scp can be run and controlled like dcf_qr_scp.

There is a startup configuration, $DCF_CFG/systems/mwl_server_unix.cfg,

and in the $DCF_CFG/apps/MWLSCP directory is where per AE Title

configuration files should go. It will use

LBS::DDS::DicomDataService::findObjects as its interface to a database.

The reference implementation file system based database uses

$DCF_CFG/test/dcf_mwl_scp/sample_objects.cfg as the index to locate

"Worklist items" The worklist items are DICOM files that contain a

Modality Worklist Scheduled Procedure Step (SPS).

dcf_mwl_scu uses the LBS::DIS::MWLSCU class. The dcf_mwl_scu and MWLSCU

class are very similar to the dcf_qr_scu and QRSCU class. You'll

notice that the MWLSCU::c_find method takes a

LBS::DIS::ModalityWorklistItem as an argument. This is a convenience

wrapper around a DicomDataSet, which lets you access DICOM elements in

the Modality Worklist Scheduled Procedure Step Sequence with get/set

methods instead of having to access the nested sequences contained in an

SPS.

4.7. DICOM compression transfer syntax support for C++

DCF C++ applications can handle DICOM datasets in any transfer syntax for non-pixel data operations

provided that compression pass through mode is turned on (except for DICOM Deflated Little Endian

Syntax and JPIP Transfer syntaxes).

DCF C++ applications can compress and decompress data sets in these encapsulated transfer syntaxes:

• 1.2.840.10008.1.2.4.5 RLE Lossless

• 1.2.840.10008.1.2.4.50 JPEG 8 bit lossy

• 1.2.840.10008.1.2.4.51 JPEG 12 bit lossy

• 1.2.840.10008.1.2.4.57 JPEG lossless

 Page 65

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

• 1.2.840.10008.1.2.4.70 JPEG lossless (predictor selection=1)

• 1.2.840.10008.1.2.4.90 JPEG-2000 lossless

• 1.2.840.10008.1.2.4.91 JPEG-2000 lossy

RLE Lossless transfer syntax is supported for compression of single frame data sets. RLE Lossless

transfer syntax is supported for the decompression of single frame and multi-frame data sets.

Note: If you are using the Aware, Inc., JPEG library, that this does not support .57.

Look at the settings under the DCS section of an application configuration file or in a DCS component

configuration file to see options that may be configured for compression.

Page 66

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

5. Java Programming Examples

This section presents a variety of Java programming examples for common DICOM integration tasks.

See $DCF_ROOT/devel/jsrc/com/lbs/examples/ for the complete working source code for

these and additional examples.

This chapter includes the following sections:

• DICOM Programming Examples section shows how simple DICOM related tasks are performed.

• Common Services Examples section covers use of the DCF framework services.

• Advanced DICOM Programming Examples covers some more complex server concepts.

For additional information, see also

• Chapter 8 – The DCF Development Environment,

• Chapter 13 – Deploying a DCF-based application.

5.1. Running Example Servers

Running the DCF tools and/or servers via the DCF Remote Service Interface generally makes running

these examples easier. Taking this approach allows easy access to convenient tools for starting and

stopping DCF server processes, viewing log files, and controlling trace/debug settings.

Start the Apache web server and open the DCF Remote Service Interface. In a Windows environment

this is all handled for you by the startup script:

Select “Start” → “All Programs” → “DICOM Connectivity Framework” →

“DCF Service Interface”

This command runs an Apache web server in its own window and invokes the default browser client to

display the DCF home page, called the “DCF Remote Service Interface”.

Alternately, if you prefer a manual approach, type “run_apache.pl” from a DCF command window,

and then use your favorite web browser to browse to “localhost:8080”, which will display the DCF

home page.

5.2. Using the DCF with Java IDE tools

5.2.1. Using the DCF with Eclipse for Java

Notes for using Eclipse v3.0.1

(extracted from README.win32.setup.txt which is found on the install CD).

If you are using a different version of Eclipse, you may have to modify these instructions for your

version of the Eclipse Platform.

To build a DCF example using Eclipse Platform version 3.0.1:

• Change to the directory of the example you wish to build, e.g., ex_jdcf_HelloWorld

• If you have changed the cinfo.cfg file, generate new CINFO.java and LOG.java java files by

running perl –S dcfmake.pl -g from a DCF Command Prompt.

• Run eclipse from a DCF Command Prompt.

Select

Start → All Programs → DICOM Connectivity Framework → DCF Command

 Page 67

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Prompt

(Note: this only needs to be done when first setting up the environment variables in the Eclipse

run dialog. After the project is set up, Eclipse may be started normally, since the configuration

will be saved.)

• From the File menu, select “New...->Project”; expand Java, select Java Project, and

click Next.

• Enter a Project Name as usual, e.g., DCF Java Examples.

• Select “Create project in external location”; browse to or enter the complete path to

the jsrc directory as the Directory option.

• Click next.

• Select the Libraries tab, click “Add External JARS...”; browse to <install

directory>\classes\LaurelBridge.jar, select it and click Open.

• Back in the Libraries tab, select Finish.

• Expand the newly created project, and select your examples from the list, e.g.,

com.lbs.examples.ex_jdcf_HelloWorld.

• Expand your example and select the source file containing the main class, e.g.,

ex_jdcf_HelloWorld.java.

• Right-click on the source file, and choose “Run->Run...”.

• Select and highlight Java Application under Configurations:.

• Click New (this should create a new configuration under Java Application).

• From the Environment tab, click Select.

• Click Select all, and click Ok.

• Click radio button “Replace native environment with specified environment”.

• Add the necessary program arguments under the Arguments tab, e.g.,

“-appcfg /apps/defaults/ex_jdcf_HelloWorld”.

• Click Apply.

• Make sure the DCF is running, and click Run. Your example application should run successfully.

5.3. DICOM Programming Examples

5.3.1. Using Java Print Element Value Program

Open a command window and change to the

devel/jsrc/com/lbs/examples/ex_jprint_element_value directory under the DCF install

directory, build (optional) using dcfmake.pl, and then execute the example application:

cd $DCF_USER_ROOT/devel/jsrc/com/lbs/examples/ex_jprint_element_value

if you want to rebuild the application (you must have the appropriate

version of Visual Studio (6, 7, or 8) installed, and in the path.

(you can run the script vsvars.bat (7.x or 8.x or 9.x)

from the visual studio directory, or perhaps run in the command window

shortcut provided with studio 7, 8 or 9). **** Note for Java, this is only because

dcfmake.pl uses the Visual Studio simply to process the “makefile”.

Page 68

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

perl –S dcfmake.pl

alternately, you can run the javac compiler on the source code directly.

make sure that %DCF_ROOT%\classes is in the CLASSPATH.

run the application using the perl launcher script.

perl –S jrun_example.pl

com.lbs.examples.ex_jprint_element_value.ex_jprint_element_value

%DCF_ROOT%\test\images\test.dcm 0010,0010

This application shows how easy it is to load DICOM format files, and extract elements from them. The

“jrun_example.pl” script calls the Java interpreter with the common DCF options (most of the Java

examples use this launcher script; you may also create individual wrapper scripts for each example –

see “ex_jdcf_HelloWorld” for an example; see Appendix G: Using Perl with the DCF for

information about using Perl with the DCF). The first argument is the class name of the Java example

to be run; specifically, it is the name of the class that defines the main() method. The second

argument is the name of some DICOM file. The third argument is the DICOM tag for which value data is

to be extracted – in this example the file is test.dcm and the attribute to be extracted is “Patients

Name”:
perl –S jrun_example.pl

com.lbs.examples.ex_jprint_element_value.ex_jprint_element_value

%DCF_ROOT%\test\images\test.dcm 0010,0010

5.3.1.1. Example – ex_jprint_element_value

The source code for this example is shown below:

package com.lbs.examples.ex_jprint_element_value;

import com.lbs.DCS.*;

import com.lbs.LOG_a.*;

import com.lbs.APC_a.*;

import com.lbs.DCF.*;

public class ex_jprint_element_value

{

 public static void main(String args[])

 {

 try

 {

 if (args.length != 2)

 {

 throw new DCFException("use: ex_jprint_element_value <dicom_filename> <tag

as hhhh,hhhh>");

 }

 //

 // setup DCF Logger and start DDCSServer I/O subsystem.

 // logger will write to stdout in this configuration.

 //

 LOGClient_a.setup(args);

 DicomFileInput dfi = new DicomFileInput(args[0]);

 DicomDataSet dds = dfi.readDataSetNoPixels();

 AttributeTag tag = new AttributeTag(args[1]);

 String value = dds.getElementStringValue(tag);

 Page 69

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

 LOG.info(tag.toString() + " = " + value);

 }

 catch (Exception e)

 {

 System.err.println("error: " + e);

 System.exit(-1);

 }

 if (AppControl.isInitialized())

 {

 AppControl.instance().shutdown(0);

 }

 System.exit(0);

 }

}

5.3.2. Using Java modify DICOM image data program

Open a command window and change to the

devel/jsrc/com/lbs/examples/ex_jModPixelData directory under the DCF install directory,

build, and execute the example application:

cd $DCF_USER_ROOT/devel/jsrc/com/lbs/examples/ex_jModPixelData

optionally, rebuild

perl –S dcfmake.pl

run. Note that the output file is written relative to the current

directory, since I/O is no longer handled by a separate server.

perl –S jrun_example.pl

com.lbs.examples.ex_jModPixelData.ex_jModPixelData

%DCF_ROOT%\test\images\ct-ab-8.dcm new8bit.dcm

This application shows how to extract image header fields and modify the image pixel data. The DCF

provides an image processing framework that allows standard and custom filter objects to be chained

together. This example shows a simplified alternative for users who just want to gain access to the pixel

data to change it, or perhaps to display it.

5.3.2.1. Example – ex_jModPixelData

The source code for the example is shown below:

//===

// Copyright (C) 2004, Laurel Bridge Software, Inc.

// 160 East Main St.

// Newark, Delaware 19711 USA

// All Rights Reserved

//===

package com.lbs.examples.ex_jModPixelData;

import com.lbs.DCF.*;

import com.lbs.LOG_a.*;

import com.lbs.APC_a.*;

import com.lbs.DCS.*;

public class ex_jModPixelData

{

 public static void main(String args[])

Page 70

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

 {

 if (args.length != 2)

 {

 System.err.println("use: ex_jModPixelData <infile> <outfile>");

 System.exit(-1);

 }

 String infile = args[0];

 String outfile = args[1];

 try

 {

 DicomFileInput dfi = new DicomFileInput(infile);

 DicomDataSet dds = dfi.readDataSet();

 dfi.close();

 // Get some of the basic image header fields. Use the DicomDataSet

 // convenience methods to get integer values for these.

 int rows = dds.getElementIntValue(DCM.E_ROWS);

 int cols = dds.getElementIntValue(DCM.E_COLUMNS);

 int bits_allocated = dds.getElementIntValue(DCM.E_BITS_ALLOCATED);

 int bits_stored = dds.getElementIntValue(DCM.E_BITS_STORED);

 int high_bit = dds.getElementIntValue(DCM.E_HIGH_BIT);

 int pixel_count = rows * cols;

 // Get the pixel data element.

 DicomElement e_pixel_data = dds.findElement(DCM.E_PIXEL_DATA);

 // Get the pixels as an array.

 // Note that DICOM defines two possible types for pixel data:

 // OB (Other byte) and OW (Other word). We cast our DicomElement

 // to the appropriate derived class.

 if (e_pixel_data.vr() == DCM.VR_OB)

 {

 byte[] pixel_data = ((DicomOBElement)e_pixel_data).getOBData();

 byte[] new_pixel_data = new byte[pixel_count];

 // do some silly modification of pixel data, like an invert.

 byte offset = (byte)((1<<bits_stored)&0xFF);

 for (int i=0; i<pixel_count; i++)

 {

 new_pixel_data[i] = (byte)(offset - pixel_data[i]);

 }

 dds.insert(new DicomOBElement(DCM.E_PIXEL_DATA, new_pixel_data));

 }

 else

 {

 short[] pixel_data = ((DicomOWElement)e_pixel_data).getOWData();

 short[] new_pixel_data = new short[pixel_count];

 short offset = (short)((1<<bits_stored)&0xFFFF);

 for (int i=0; i<pixel_count; i++)

 {

 new_pixel_data[i] = (short)(offset - pixel_data[i]);

 }

 dds.insert(new DicomOWElement(DCM.E_PIXEL_DATA, new_pixel_data));

 }

 // Give the object a new UID.

 // There are other attributes that should also be set to

 // indicate that this is a "derived image".

 // That is beyond the scope of this example.

 dds.insert(DicomElementFactory.create(

 DCM.E_SOPINSTANCE_UID, DicomDataDictionary.makeUID()));

 // Save the data set with the new pixel data.

 DicomFileOutput dfo =

 new DicomFileOutput(outfile, UID.TRANSFERLITTLEENDIAN, false);

 Page 71

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

 dfo.writeDataSet(dds);

 dfo.close();

 }

 catch(DCFException e)

 {

 System.err.println("error: " + e);

 System.exit(-1);

 }

 if (AppControl.isInitialized())

 {

 AppControl.instance().shutdown(0);

 }

 System.exit(0);

 }

5.3.3. Using Java DICOM Verification (Echo) Client Classes

This example shows the use of com.lbs.DCS.DicomSCU to connect to an SCP, send, and receive

DIMSE messages.

Before running the example, you will need to provide an SCP for the verification service class. From

the DCF Remote Service Interface page in your web browser (see Section 2.4.3), click “Choose a

Configuration”, and then choose “mwl_server_win32.cfg”.

(Note: You could select other server system configurations, but this one will work for this example as

well as for the following one.)

When the message indicating that the system is started appears, click “Back” or wait for an auto-

redirect to return to the main DCF Remote Service Interface.

Background: Starting this DCF system configuration (mwl_server_win32.cfg) performs the

following:

• The script dcfstart.pl reads a configuration file and starts a specified list of utility or server

processes. (Utility processes are run in the foreground and are typically used for pre-startup

cleanup, etc. Server processes are run in the background.)

• Various system cleanup utilities are run; for example, log files from the last session are archived

to a subdirectory under $DCF_TMP/log, stale process configuration files are removed, etc.

• The DCF log server application is started. Client LOG adapters for C++, Java, and C# optionally

forward messages to this server.

• The DCDS_Server (Distributed Configuration Data Service) is started. This provides a

lightweight distributed object, hierarchical database for configuration data.

• The dcf_mwl_scp is started, which is the DCF simple MWL server implemented in C++.

Open a command window and change to the devel/jsrc/com/lbs/examples/ex_jecho_scu

directory under the DCF install directory, then build and execute the example application:

cd $DCF_USER_ROOT/devel/jsrc/com/lbs/examples/ex_jecho_scu

perl –S dcfmake.pl

perl –S jrun_example.pl com.lbs.examples.ex_jecho_scu.ex_jecho_scu

MWLSCP1 localhost 2000

5.3.3.1. Example – ex_jecho_scu

The source code for the example is shown below:

//===

// Copyright (C) 2002-2005, Laurel Bridge Software, Inc.

Page 72

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

// 160 East Main St.

// Newark, Delaware 19711 USA

// All Rights Reserved

//===

package com.lbs.examples.ex_jecho_scu;

import com.lbs.LOG.*;

import com.lbs.APC.*;

import com.lbs.CDS.*;

import com.lbs.DCF.*;

import com.lbs.DCS.*;

import com.lbs.LOG_a.*;

import com.lbs.APC_a.*;

public class ex_jecho_scu

{

 private static String usage_ = "use ex_jecho_scu <called_ae> <called_host>

<called_port>\n";

 public static void main(String args[])

 {

 try

 {

 AppControl_a.setupORB(args);

 CFGDB_a.setFSysMode(true);

 CFGDB_a.setup(args);

 AppControl_a.setup(args, CINFO.instance());

 LOGClient_a.setup(args);

 if (args.length != 3)

 {

 throw new DCFException(usage_);

 }

 try

 {

 VerificationClient client = new VerificationClient(

 "ECHO_SCU",

 args[0],

 args[1] + ":" + args[2]

);

 client.requestAssociation();

 client.cEcho(10);

 client.releaseAssociation();

 }

 catch (DCFException e)

 {

 LOG.error(-1, "DCFException caught:\n", e);

 System.err.println("test failed - see log files for output");

 }

 }

 catch (Exception e)

 {

 LOG.error(-1, "Exception caught:\n", e);

 System.err.println("test failed - see log files for output");

 }

 if (AppControl.isInitialized())

 {

 AppControl.instance().shutdown(0);

 }

 System.Exit(0);

 }

}

 Page 73

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

5.3.4. Using Java Modality Worklist Query SCU Classes

This example shows how to extend com.lbs.DCS.AssociationRequester to create a working

Modality Worklist SCU. The example creates a worklist query, using the generated IOD wrappers, and

then sends the query as a C-Find and processes C-Find-Response messages until a final status is

returned by the SCP.

This example uses the server configuration (mwl_server_win32.cfg) started in the previous

example. This server should be running to allow this example to run (see 5.3.3).

Open a command window and change to the devel/jsrc/com/lbs/examples/ex_jmwl_client

directory under the DCF install directory, then build and execute the example application:

cd $DCF_USER_ROOT/devel/jsrc/com/lbs/examples/ex_jmwl_client

optionally rebuild the example

perl –S dcfmake.pl

run the example with the parameters: <called-ae-title> <host> <port>

perl –S jrun_example.pl com.lbs.examples.ex_jmwl_client.ex_jmwl_client

MWLSCP1 localhost 2000

5.3.4.1. Example – ex_jmwl_client

The source code for the example is shown below:

//===

// Copyright (C) 2007, Laurel Bridge Software, Inc.

// 160 E. Main Street

// Newark, Delaware 19711 USA

// All Rights Reserved

//===

package com.lbs.examples.ex_jmwl_client;

import java.util.Vector;

import com.lbs.DCF.*;

import com.lbs.APC.*;

import com.lbs.DCS.*;

import com.lbs.DIS.*;

/**

*/

public class ex_jmwl_client extends AssociationRequester

{

 private AssociationInfo ainfo_ = null;

 private boolean f_connected_;

 public ex_jmwl_client(String calling_ae, String called_ae, String called_addr)

 throws DCSException

 {

 f_connected_ = false;

 ainfo_ = new AssociationInfo();

 ainfo_.callingTitle(calling_ae);

 ainfo_.calledTitle(called_ae);

 ainfo_.calledPresentationAddress(called_addr);

 String ts_list[] = new String[3];

 ts_list[0] = UID.TRANSFERLITTLEENDIANEXPLICIT;

 ts_list[1] = UID.TRANSFERLITTLEENDIAN;

 ts_list[2] = UID.TRANSFERBIGENDIANEXPLICIT;

Page 74

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

 RequestedPresentationContext rq_ctx

 = new RequestedPresentationContext((byte)1,

 UID.SOPMODALITYWORKLIST_FIND, ts_list);

 ainfo_.addRequestedPresentationContext(rq_ctx);

 }

 public void requestAssociation()

 throws DCSException

 {

 setAssociationInfo(ainfo_);

 super.requestAssociation();

 ainfo_ = getAssociationInfo();

 Vector accepted_ctx_list = ainfo_.acceptedPresentationContextList();

 for(int i=0; i<accepted_ctx_list.size(); i++)

 {

 AcceptedPresentationContext ctx =

 (AcceptedPresentationContext)

 accepted_ctx_list.elementAt(i);

 if (ctx.id() == 1)

 {

 f_connected_ = true;

 }

 }

 if (!f_connected_)

 {

 releaseAssociation();

 throw new DCSException("Association was accepted, but the required presentation

context was not");

 }

 }

 public int sendCFind(DicomDataSet query, int timeout)

 throws DCSException

 {

 if (!isConnected())

 {

 throw new DCSException("invalid state: not connected");

 }

 DimseMessage msg = new DimseMessage();

 msg.commandField(DimseMessage.C_FIND_RQ);

 msg.affectedSopclassUid(UID.SOPMODALITYWORKLIST_FIND);

 msg.dataSetType(0x0100);

 msg.context_id(1);

 msg.priority(1);

 msg.data(query);

 LOG.debug(CINFO.df_SHOW_GENERAL_FLOW,

 "sending C-Find Request:\n" + msg);

 sendDimseMessage(msg, 30);

 return 0;

 }

 DimseMessage getCFindResponse(int timeout)

 Page 75

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

 throws DCSException

 {

 DimseMessage rsp = receiveDimseMessage((short)1, timeout);

 // Note: do this, and we avoid calling toString() on the

 // response message when debug is off.

 if (CINFO.testDebugFlags(CINFO.df_SHOW_GENERAL_FLOW))

 {

 LOG.debug("received response message:\n" + rsp);

 }

 return rsp;

 }

 private static String usage_ = "use ex_jmwl_client <called_ae> <called_host>

<called_port>\n";

 public static void main(String args[])

 {

 int status;

 try

 {

 //

 // Uncomment if you want the standard common services setup -

 // i.e.,

 //==

 // CDS_a.CFGDB adapter uses DCDS_Server,

 //

 // APC_a.AppControl adapter loads app config from

 // /apps/defaults/examples/ex_jmwl_client,

 // saves proc config to /procs/ex_jmwl_client.<pid>.

 // DDCSServer jni Dicom IO library uses this proc configuration.

 //

 // LOG_a.LOGClient adapter uses file and DLOG_Server outputs, per

 // app config settings.

 //

 //==

 // Leave commented for minimal common services setup -

 //==

 // CFGDB adapter reads from files in $DCF_CFG as needed

 //

 // AppControl does not maintain an application or proc config. (DDCSServer

 // jni Dicom IO library loads config info as needed from

 // /apps/defaults/dcf_java_default)

 //

 // LOGClient writes to console

 //

 //------------------------------------

 // Framework.initDefaultServices(CINFO);

 //------------------------------------

 if (args.length != 3)

 {

 throw new DCFException(usage_);

 }

 // create SCU

 ex_jmwl_client client = new ex_jmwl_client("MWL_SCU",

 args[0],

 args[1] + ":" + args[2]

);

Page 76

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

 // connect

 client.requestAssociation();

 // make a query, using the generated IOD wrappers for convenience

 ModalityWorklistItem query = new ModalityWorklistItem();

 query.patientsName("");

 query.patientId("");

 query.studyInstanceUid("");

 ScheduledProcStepSeq sps = new ScheduledProcStepSeq();

 sps.schedProcStepStartDate("20000112-20041231");

 sps.modality("CR");

 query.scheduledProcStepSeq(sps);

 // send the query (C-Find-Request)

 int timeout=10;

 System.err.println("query dataset =\n" + query.data_set());

 client.sendCFind(query.data_set(), timeout);

 // process responses until we get a final status

 for (;;)

 {

 DimseMessage response = client.getCFindResponse(timeout);

 System.err.println("received C-Find Response:\n" + response);

 if ((response.status() == DimseStatus.DIMSE_SUCCESS)

 || (response.status() == DimseStatus.DIMSE_FAILURE))

 {

 break;

 }

 }

 // hang up

 client.releaseAssociation();

 status = 0;

 }

 catch (Exception e)

 {

 LOG.error(-1, "error", e);

 status = 1;

 }

 if (AppControl.isInitialized())

 {

 AppControl.instance().shutdown(status);

 }

 System.exit(status);

 }

}

5.3.5. Using Java Print Client Classes

A common application of the DICOM protocol is sending DICOM images or other objects to a DICOM

Print Service Class Provider. The simplest way to use the DCF for printing is to use the PrintClient

class. PrintClient provides a high level mechanism for printing DICOM objects and communicating

 Page 77

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

with the print SCP. The print job itself is described by the PrintJobDescription class. Users of

PrintClient that want to receive notifications as the status of the DICOM print-job or printer changes

should implement the PrintClientListener interface.

The DCF Java PrintClient class provides a very high level interface to a DICOM print SCP. The

application developer is removed from the process of negotiating an association, sending the n-create

and n-action and other DIMSE messages, managing the complex relationships between objects in the

normalized service classes, and handling printer and print job status notifications. The sheets of images

that are to be printed are defined in an intuitive hierarchical structure. The PrintClient object

handles the messy details of DICOM Print.

The PrintJobDescription object contains basic attributes of the job, such as the server address, and

various job level options. Also included in the PrintJobDescription is a single

PrintJobFilmSession object. This corresponds to the DICOM film-session object.

PrintJobFilmSession contains one or more PrintJobFilmBox objects. A PrintJobFilmBox

corresponds to the DICOM film-box object, which represents a sheet or film to be printed.

PrintJobFilmBox contains one or more PrintJobImageBox objects. A PrintJobImageBox

corresponds to a DICOM image-box and represents a single image to be placed somewhere on the film.

When the job has completed, a PrintJobStatus object is returned that summarizes the results of the

print operation.

The source code for a simple example print client application is shown below. The example may be

found in the devel/jsrc/com/lbs/examples/ex_jprint_client directory under the DCF

installation directory.

Open a command window and change to the

devel/jsrc/com/lbs/examples/ex_jprint_client directory under the DCF install directory,

then build and execute the example application:

cd $DCF_USER_ROOT/devel/jsrc/com/lbs/examples/ex_jprint_client

optionally rebuild the example

perl –S dcfmake.pl

run the example with the parameters: <image name> <host:port:CALLED_AE>

perl –S jrun_example.pl

com.lbs.examples.ex_jprint_client.ex_jprint_client

%DCF_ROOT%/test/images/test.dcm localhost:2000:PrintSCP1

5.3.5.1. Example – ex_jprint_client

The application initializes the DCF core framework – CDS, APC, etc – and then the

DicomDataService adapter, which is used by the DicomInstanceInfo class to load objects. It sets

up the print job – specifying items like the address of the DICOM printer, and configures the job with a

film box inside a film session and a print job object – and submits it. A PrintJobStatus object

reports the final status of the print operation.

The source code for the example is shown below:

//===

// Copyright (C) 2005, Laurel Bridge Software, Inc.

// 160 East Main St.

// Newark, Delaware 19711 USA

// All Rights Reserved

//===

package com.lbs.examples.ex_jprint_client;

import com.lbs.APC.*;

Page 78

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

import com.lbs.LOG_a.*;

import com.lbs.CDS_a.*;

import com.lbs.APC_a.*;

import com.lbs.DDS.*;

import com.lbs.DDS_a.*;

import com.lbs.DCF.*;

import com.lbs.DCS.*;

import com.lbs.DPS.*;

public class ex_jprint_client

{

 public ex_jprint_client()

 {

 }

 public static void usage()

 {

 System.out.println("Usage: ex_jprint_client image name host:port:CALLED_AE_TITLE"

);

 }

 public void runPrint(String args[])

 throws DCSException, DCFException

 {

 // Load image

 // Note: In the future you will be able to use a DicomDataSet in

 // place of a file.

 DicomPersistentObjectDescriptor dpod = new DicomPersistentObjectDescriptor();

 dpod.persistentId(args[0]);

 // Explicit Little Endian

 dpod.persistentInfo("1.2.840.10008.1.2.1");

 // Print server

 String print_server_address = args[1];

 PrintJobDescription job = new PrintJobDescription(); // describes the

job we want to do

 PrintJobFilmSession film_session = new PrintJobFilmSession();

 PrintJobFilmBox film_box = new PrintJobFilmBox();

 PrintJobImageBox image_box = new PrintJobImageBox();

 job.serverAddress(print_server_address);

 job.clientAddress("DEMO");

 job.requestPrintJobSOPClass(true);

 job.pollPrintJob(true);

 job.printJobPollRateSeconds(2);

 job.jobTimeoutSeconds(30);

 film_session.numberOfCopies("1");

 film_session.printPriority("HIGH");

 film_session.mediumType("BLUE FILM");

 film_session.filmDestination("MAGAZINE");

 film_session.filmSessionLabel("test");

 film_session.memoryAllocation("0");

 film_session.ownerId("DCF");

 film_box.imageDisplayFormat("STANDARD\\1,1");

 film_box.filmOrientation("PORTRAIT");

 film_box.filmSizeId("14INX17IN");

 film_box.magnificationType("NONE");

 film_box.smoothingType("NONE");

 film_box.borderDensity("0");

 film_box.emptyImageDensity("0");

 film_box.minDensity(0);

 film_box.maxDensity(280);

 film_box.trim("YES");

 Page 79

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

 film_box.configurationInformation("NONE");

 film_box.illumination(0);

 film_box.reflectedAmbientLight(0);

 film_box.requestedResolutionId("HIGH");

 image_box.imagePosition(1);

 image_box.polarity("NORMAL");

 image_box.magnificationType("NONE");

 image_box.smoothingType("NONE");

 image_box.configurationInformation("NONE");

 image_box.requestedImageSize("0");

 image_box.reqdDecimatecropBehavior("DECIMATE");

 image_box.imageInstanceInfo(new DicomInstanceInfo(dpod));

 film_box.addImageBox(image_box);

 film_session.addFilmBox(film_box);

 job.filmSession(film_session);

 PrintClient print_client = new PrintClient();

 LOG.info("submitting print job:" + job.toString());

 PrintJobStatus job_status = new PrintJobStatus(job.jobUID());

 job_status.status("RUNNING");

 job_status.statusInfo("NORMAL");

 print_client.submitPrintJob(job, null, job_status);

 LOG.info("Done! Print job status: " + job_status);

 }

 public static void main(String args[])

 {

 if (args.length < 2)

 {

 usage();

 System.exit(0);

 }

 try

 {

 AppControl_a.setupORB(args);

 CFGDB_a.setFSysMode(true);

 CFGDB_a.setup(args);

 AppControl_a.setup(args, CINFO.instance());

 // DicomDataService must be set up for the DicomInstanceInfo

 // to load the image.

 DicomDataService_a.setup(args);

 ex_jprint_client client = new ex_jprint_client();

 client.runPrint(args);

 }

 catch(DCSException e)

 {

 LOG.error(-1, "DCS Exception caught: ", e);

 if (AppControl.isInitialized())

 {

 AppControl.instance().shutdown(-1);

 }

 System.exit(-1);

 }

 catch(DCFException e)

 {

 LOG.error(-1, "DCF Exception caught: ", e);

 if (AppControl.isInitialized())

Page 80

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

 {

 AppControl.instance().shutdown(-1);

 }

 System.exit(-1);

 }

 catch(Exception e)

 {

 LOG.error(-1, "Exception caught: ", e);

 LOG.error(-1, LOG.formatStackTraceMsg(e));

 if (AppControl.isInitialized())

 {

 AppControl.instance().shutdown(-1);

 }

 System.exit(-1);

 }

 AppControl.instance().shutdown(0);

 System.exit(0);

 }

}

5.3.6. Using Java Store Client Classes

A common application of the DICOM protocol is sending DICOM images or other objects to a DICOM

Storage Service Class Provider. The simplest way to use the DCF is to use the StoreClient class.

StoreClient provides a high level mechanism for sending DICOM objects using the C-STORE-RQ

DIMSE message. The store job itself is described by the StoreJobDescription class. Users of

StoreClient that want to receive notifications when each image has been stored and a final status for

the job should implement the StoreClientListener interface.

5.3.6.1. Example – ex_jstore_client

See $DCF_ROOT/devel/jsrc/com/lbs/examples/ex_jstore_client for the complete source

code, including code implementing the StoreClientListener interface.

• Listed here are two methods from ex_jstore_client that do most of the work:

createStoreJobDescription() creates a StoreJobDescription object;

• runJob() uses a StoreClient with the created StoreJobDescription to send the job to an

SCP.

The source code for the examples is shown below:

createStoreJobDescription:

private StoreJobDescription createStoreJobDescription()

 throws DCSException, DCFException

 {

 StoreJobDescription sjd;

 //If we got a Job Description cfg file name on the command line.

 if(cfgstr_ != null)

 {

 CFGGroup storeJobConfiguration = CFGDB.instance().loadGroup(cfgstr_);

 CFGGroup configuration =

storeJobConfiguration.getGroup("store_job_description");

 LOG.info("Job CFGGroup = " + configuration.toString());

 sjd = new StoreJobDescription(configuration);

 }

 else

 {

 Page 81

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

 //Build up a StoreJobDescription from command line options and a list of

filenames provided

 //on the command line.

 sjd = new StoreJobDescription();

 // server name is either an AE name in the config db,

 // (currently %DCF_CFG%/dicom/network/ae_title_mappings)

 //

 // or is <host>:<port>:<called-ae>

 // e.g.: sjd.ServerName = "localhost:2000:StoreSCP1";

 sjd.calledHost(called_host_);

 sjd.calledPort(called_port_);

 sjd.calledAETitle(called_ae_title_);

 sjd.callingAETitle(calling_ae_title_);

 sjd.responseTimeoutSeconds(40);

 //filenames from command line args

 for (int i=0 ; i<file_list_.size(); i++)

 {

 String filename = (String)file_list_.get(i);

 LOG.info("Filename = " + filename);

 sjd.addInstance(new StoreJobInstanceInfo(filename));

 }

 }

 return sjd;

 }

runJob:

 public int runJob()

 {

 int exit_status= -1;

 try

 {

 // create a job

 StoreJobDescription sjd = createStoreJobDescription();

 for(int i=0; i<=repeat_count_; i++)

 {

 // create a StoreClient

 StoreClient client = new StoreClient();

 StoreJobStatus status_ret = new StoreJobStatus(null,null,null,null,0,0);

 DicomSessionSettings session_settings = new DicomSessionSettings();

 // submit the job and wait for it to complete.

 client.submitStoreJob(sjd, this, status_ret);

 if(status_ret.status().compareTo("SUCCESS") == 0)

 {

 exit_status = 0;

 }

 else

 {

 exit_status = 1;

 }

 LOG.info("Current status = " + status_ret.toString());

 }

 }

 catch(Exception e)

 {

 LOG.error(-1, "", e);

Page 82

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

 exit_status = 1;

 }

 return exit_status;

 }

5.3.7. Using Java Q/R Client Classes

A common application of the DICOM protocol is querying an image archive for images or other

composite objects. The simplest way to do this with the DCF is to use the QRSCU class. QRSCU

provides a high level mechanism for interoperating with QRSCP’s via the C-FIND, C-MOVE and

C-GET DIMSE messages.

5.3.7.1. Example – ex_jqr_scu

See $DCF_ROOT/devel/jsrc/com/lbs/examples/ex_jqr_scu/ex_jqr_scu.java for a

command line application that uses these classes and interface.

See $DCF_ROOT/devel/jsrc/com/lbs/examples/ex_jquery_scu for a GUI application that

uses these classes and interface.

Here is a code fragment that creates a QRSCU object and a QRIdentifier (query attributes) then sends

it as a C-FIND Request.

String host = hostname_box_.getText().trim();

String port = port_box_.getText().trim();

AssociationInfo ainfo = new AssociationInfo();

ainfo.calledTitle(called_ae_box_.getText().trim());

ainfo.callingTitle(calling_ae_box_.getText().trim());

ainfo.calledPresentationAddress(host + ":" + port);

RequestedPresentationContext ctx = new RequestedPresentationContext((byte)1,

 UID.SOPPATIENTQUERY_FIND, new String[] {ts_uid_});

ainfo.addRequestedPresentationContext(ctx);

CFGGroup session_cfg;

DicomSessionSettings session_settings = new DicomSessionSettings();

String session_cfg_name = "/dicom/QRSCU_default_session_settings.cfg";

try

{

 session_cfg = CFGDB.instance().loadGroup(session_cfg_name, true);

 session_settings = new DicomSessionSettings(session_cfg);

}

catch(CDSException e1)

{

 LOG.error(-1, "Error loading session settings from CFGDB group name = "

 + session_cfg_name, e1);

}

QRSCU scu_ = new QRSCU(ainfo, session_settings);

Configuration config = parent_panel_.getConfiguration();

scu_.maxReturnedResults(config.maxReturnedResults());

scu_.queryTimeoutSeconds(config.queryTimeoutSeconds());

scu_.setRequestedSopClassUid(UID.SOPPATIENTQUERY_FIND);

QRIdentifier query = new QRIdentifier();

// Fields to query on:

query.patientsName(patient_name_box_.getText().trim());

query.queryretrieveLevel((String)query_level_combo_box_.getSelectedItem());

query.studyInstanceUid(study_uid_box_.getText().trim());

 Page 83

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

// Fields to return:

query.patientId("");

query.patientsSex("");

query.modality("");

query.studyDate("");

query.numberStudyRelInstances("");

query.data_set().insert(DCM.E_INSTANCE_AVAILABILITY, "");

addExtraDicomElementsToQuery(query, config.additionalDicomElements());

DicomDataSet expected_fields = new DicomDataSet();

setTagsToDisplay(expected_fields, config.tagsToDisplay());

parent_panel_.setFieldsExpected(expected_fields);

LOG.debug(CINFO.df_SHOW_GENERAL_FLOW, "Query Data set is " + query.data_set());

// TODO: figure out how to bold some parts of the output

query_status_.append("Query data set:\n");

query_status_.append(query.data_set().toString());

query_status_.append("\n");

scu_.requestAssociation();

scu_.cFind(query.data_set(), QueryInfoPanel.this, false);

By implementing the QueryListener interface an object will notified when DIMSE Response

messages are received, such as C-FIND-RSP or C-MOVE-RSP or C-GET-RSP.

The queryEvent() method is called for each intermediate response.

public void queryEvent(DimseMessage rsp)

{

 //output contents of message to log file

 LOG.info("Received a DIMSE response message " + rsp);

}

The queryComplete() method is called when a final response is received or if an internal error

occurs in the QRSCU class.

public void queryComplete(int status)

{

 try

 {

 //internal error send an abort message.

 if(status == 4)

 {

 LOG.error(-1, "Aborting association\n");

 scu_.abortAssociation();

 }

 else

 {

 LOG.info("Releasing association\n");

 scu_.releaseAssociation();

 }

 scu_ = null;

 }

 catch(DCSException e)

 {

 LOG.error(-1, "Error occurred while disconnecting association", e);

 }

}

Page 84

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

5.3.8. Handling alternate character sets with DCF (Java)

The DCF provides limited support for string elements that are encoded in non-default character sets

(i.e., a dataset that contains element 0008,0005 Specific Character Set and where that element’s value

is set).

Essentially, when reading any string data from a DICOM file or DIMSE message, DCF will explicitly

specify that the raw bytes should be converted to a string using ISO8859-1 decoding. Since

ISO8859-1 is an 8 bit character set, you can get the bytes back from the element and create a new

string that decodes the bytes using a different character set. Likewise, when the DCF retrieves the bytes

from a string element prior to writing a file or DIMSE message, it will specify that ISO8859-1

encoding should be used. For example:

DicomStringElement e = dds.getElement(DCM.E_PATIENTS_NAME);

String s = e.getEncodedStringValue();

byte[] raw_data = s.getBytes("ISO8859-1"); // since we decoded this way, this should

 // produce the original bytes again.

String s2 = new String(raw_data, some_other_charset_name);

The method getEncodedStringValue concatenates all of the values using “\” as the delimiter, and

adds any needed pad chars (space or null for UIDs). The resultant value should end up looking the

same as the original raw data.

Notice that the number of values (DicomStringElement.vm() or

DicomStringElement.values().length) when we force ISO8859-1 decoding may be different

from the number of values when using some other character set. That is, a “\” byte value in a string in

an alternate char set may actually be something other than a DICOM string VM delimiter.

Also note that if you create DicomStringElements containing text in an alternate character set, you

may need to re-encode it as ISO8859-1 before passing it to the constructor: For example:

String s = some_string_in_an_altnate_char_set;

byte[] raw_data = s.getBytes(alternate_char_set_name);

String s2 = new String(raw_data, "ISO8859-1");

DicomPNElement e = new DicomPNElement(DCM.E_PATIENTS_NAME, s2);

 // or

DicomElement e = DicomElementFactory.create(DCM.E_PATIENTS_NAME, s2);

Note that Chapter 3, Section C.12.1.1.2 Specific Character Set in the DICOM standard outlines all the

various defined terms for DICOM element 0008,0005 Specific Character Set. Another list is provided

in Chapter 18, Annex D - IANA Mapping (informative).

The Windows character set names, for example, don’t match up to the values DICOM requires for the

0008,0005 tag. The OEM developer will need to write a mapping method of some kind to translate

back and forth between the various naming conventions. For example, if the encoding name for Java is

“ISO-8859-2” (ISO Latin 2), then, by these tables, the DICOM value to put in the 0008,0005 attribute

would be “ISO_IR 101”.

5.4. Deploying a Simple Standalone DCF Java Application

The following procedure shows a simple method of deploying a DCF Java application. The application

(.class), its required libraries, and configuration data can be installed into a single directory on the target

system. The application can then be run from the installation directory.

We’ll show the process of creating the install directory on your DCF developer box (the host with the

DCF toolkit installed). Once created, that install directory can then be copied to the target using any

 Page 85

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

number of methods: zip on your DCF developer box, and unzip on the target; or perhaps burn this

directory to a CD-ROM and then run directly from the CD on the target.

This example shows deploying the ex_jdcf_filter example and ex_jdcf_dump. The process

would be modified somewhat for your own application.

Perform the following steps:

1. Open a DCF command window:
Select “Start” → “All Programs” → “DICOM Connectivity Framework” →

“DCF Command Prompt”

2. Create the test install directory:

Note: You could paste this text into a batch file and run it to automate this process.

 REM ###

 REM ### create install dir

 REM ###

 mkdir DCF_test_java_install

 cd DCF_test_java_install

 REM ###

 REM ### copy required library files from %DCF_LIB% (../DCF/lib)

 REM ###

 copy %DCF_LIB%\DCF_DCFCore.dll

 REM ###

 REM ### copy required Java JAR file from %DCF_ROOT%\classes

 copy %DCF_ROOT%\classes\LaurelBridge.jar

 REM ### copy required library files from %DCF_BIN% (../DCF/bin).

 REM ### These may exist in other places on the system, but copies

 REM ### are put here during DCF toolkit install for convenience.

 REM ### (Note omniORB dlls may not be required depending on the

 REM ### application and your DCF version.)

 copy %DCF_LIB%\DCF_com_lbs_DCS_DicomTSCWCodec.dll

 copy %DCF_LIB%\DCF_TSCW.dll

 copy %DCF_LIB%\DCF_TSCWIJG.dll

 copy %DCF_LIB%\DCF_TSCWJasper.dll

 REM ### The Aware wrapper dll is needed only if using Aware’s JPEG libraries.

 REM ### Note the actual Aware JPEG library (awj2k.dll) must be purchased separately

 copy %DCF_LIB%\DCF_TSCWAware.dll

 REM ### If you are building from a DCF VisualStudio8.x .NET toolkit:

 copy %DCF_BIN%\msvcp80.dll

 copy %DCF_BIN%\msvcr80.dll

 REM ###

 REM ### Copy the classes for the application that you have - for example,

 REM ### include both the Java ex_jdcf_filter example and the ex_jdcf_dump

 REM ### utilities. Make sure that the directory structure matches, i.e.,

 REM ### you must have the class files in com\lbs\examples.

 REM ###

 copy %DCF_ROOT%\classes\com\lbs\examples\ex_jdcf_filter*

 classes\com\lbs\examples\ex_jdcf_filter

 copy %DCF_ROOT%\classes\com\lbs\examples\ex_jdcf_dump*

 classes\com\lbs\examples\ex_dcf_dump

 REM ###

 REM ### Create a minimal configuration directory.

 REM ###

 mkdir cfg

 mkdir cfg\apps

 mkdir cfg\apps\defaults

 mkdir cfg\procs

Page 86

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

 REM ###

 REM ### Copy the license configuration file, and the application configs

 REM ### for the installed programs.

 REM ###

 copy %DCF_CFG%\systeminfo cfg\systeminfo

 copy %DCF_CFG%\apps\defaults\ex_jdcf_filter cfg\apps\defaults

 copy %DCF_CFG%\apps\defaults\ex_jdcf_dump cfg\apps\defaults

3. Create the media by which you will deliver the install directory.

4. On the target machine do the following:

a) Unpack, copy, or otherwise make the DCF app install directory available. For example, copy

or unzip to C:\temp\DCF

b) Install the Java JRE on the target box if it is not already installed; some applications may

also require the JAI and JAI Image I/O installations to read and write DICOM files with

JPEG data.

c) From a command window, go to the install directory. For example, use C:\temp\DCF.
cd C:\temp\DCF

d) Set environment variables and run your apps (you could put these steps in a run_app.bat

file). You need to put the path to the classes and the DCF JAR file in the CLASSPATH, as

well as putting your installation directory into the PATH so that the DLLs can be found.

 set DCF_CFG=C:\temp\DCF\cfg

 set CLASSPATH=C:\temp\DCF\classes;C:\temp\DCF\LaurelBridge.jar;%CLASSPATH%

 set PATH=C:\temp\DCF;%PATH%

 ### Filter a file

 java com.lbs.examples.ex_jdcf_filter.ex_jdcf_filter –f file:/some_filter.cfg

 ### display input image (choose a dicom file in the line below)

 java com.lbs.examples.ex_jdcf_dump.ex_jdcf_dump \temp\test.dcm

5.5. Common Services Programming Examples

5.5.1. Java “Hello World” Example Using DCF Common Services

To demonstrate some of the capabilities of the DCF, you can create and run the most basic of code

examples: the “Hello World” program. The DCF “hello world” demo will make use of the DCF

development tools, as well as the common services APIs and implementations.

Change to the devel/jsrc/com/lbs/examples/ex_jdcf_HelloWorld directory under the DCF

install directory, then build and execute the example application:

cd $DCF_USER_ROOT/devel/jsrc/com/lbs/examples/ex_jdcf_HelloWorld

perl –S dcfmake.pl

perl ./ex_jdcf_HelloWorld.pl

From your web browser, select “View Log Files” from the DCF Remote Service Interface. Select the

log file for the ex_jdcf_HelloWorld application, and view the output.

To create the ex_jdcf_HelloWorld application, the following steps were followed:

1. Create a directory for the application

2. Create a component information file for the application

3. Create the source code for the application

4. Create a wrapper script to invoke the application

 Page 87

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

5. Build the application

6. Update the configuration database

1. Create a directory for the new application component – In the DCF, every application or library is a

component, and has its own source directory.
mkdir $DCF_ROOT/devel/jsrc/com/lbs/examples/ex_jdcf_HelloWorld

2. Create a component information file in that directory. This file must be called “cinfo.cfg”. For

this example it contains the following:
#==

static information common to all instances of ex_jdcf_HelloWorld component

#==

[component_info]

name = ex_jdcf_HelloWorld

type = java_app

category = examples

description = Java test application for DCF common services

package_prefix = com.lbs.examples

version = 0.1

[required_components]

component = java_lib/LOG_a

component = java_lib/APC_a

component = java_lib/CDS_a

[debug_controls]

debug_flag = DF_EXAMPLE, 0x10000, do something special if this debug flag is set

#==

per-instance information for the ex_jdcf_HelloWorld component

#==

[ex_jdcf_HelloWorld]

debug_flags = 0x00000

[ex_jdcf_HelloWorld/english]

hello_world = hello world

[ex_jdcf_HelloWorld/spanish]

hello_world = hola mundo

[ex_jdcf_HelloWorld/french]

hello_world = bonjour le monde

[ex_jdcf_HelloWorld/german]

hello_world = hallo welt

The file is in the DCF configuration file format, which provides for attributes, groups, and nested

groups.

Note: The easiest way to create the cinfo.cfg file for your application or library is to copy one from

a similar component, then edit as needed.

The first group [component_info] describes basic attributes of the component. The name

“ex_jdcf_HelloWorld” is combined with the package_prefix “com.lbs.examples” to form the Java

package name “com.lbs.examples.ex_jdcf_HelloWorld”. Note that this corresponds to the source

directory name, relative to the Java source directory (DCF_ROOT/devel/jsrc). The component

type is “java_app” which indicates a Java application.

Page 88

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

You can use dcfmake.pl to create applications in any directory, as long as you create a

cinfo.cfg file in that directory. You can also use DCF Java classes from your application as you

would any other Java class library.

The [required_components] group specifies three components needed by this application. The

group [debug_controls] is where the developer can add support for conditional logging or other

behavior specific to this component. Debug controls that are defined here can be accessed via the

web interface.

The [ex_jdcf_HelloWorld] group contains the instance configuration for the component. This

data is used directly in the example code.

3. Create the application source code

For this example, the file is called “ex_jdcf_HelloWorld.java”. Because of the package name

that was specified in the cinfo.cfg file, the generated class will thus be

com.lbs.examples.ex_jdcf_HelloWorld.ex_jdcf_HelloWorld

package com.lbs.examples.ex_jdcf_HelloWorld;

import com.lbs.LOG.*;

import com.lbs.APC.*;

import com.lbs.CDS.*;

import com.lbs.DCF.*;

/**

* The class ex_jdcf_HelloWorld demonstrates the most basic of programs

* using the DCF common services interfaces for Application Control (APC),

* Configuration Data Services (CDS), and Logging (LOG)

*

* To make it interesting, messages from different languages

* are retrieved from the application configuration. This is not intended

* to illustrate a production approach to internationalization.

*/

public class ex_jdcf_HelloWorld

{

 private static String usage_ = "use ex_jdcf_HelloWorld [adapter options]

[ex_jdcf_HelloWorld options]\n"

 + "adapter options are passed to LOG_a, CDS_a, and APC_a setup methods\n"

 + "use -help to get each adapter to display its options without setting up\n"

 + "[ex_jdcf_HelloWorld options]\n"

 + "-help display this message\n"

 + "-lang [english|spanish|french] specifies which messages to display\n";

 public static void main(String args[])

 {

 try

 {

 String language = "english";

 Framework.initDefaultServices(args);

 for (int i=0; i < args.length; i++)

 {

 if (args[i].equals("-help"))

 {

 System.err.println(usage_);

 System.exit(0);

 }

 else if (args[i].equals("-lang"))

 {

 if ((i+1) >= args.length)

 {

 Page 89

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

 System.err.println(usage_);

 System.exit(1);

 }

 language = args[i+1];

 }

 }

 // Get the ex_jdcf_HelloWorld component configuration from within

the

 // ex_jdcf_HelloWorld application instance configuration

 CFGGroup component_cfg = CINFO.getConfig();

 // get the configuration group containing various message strings

 CFGGroup messages = component_cfg.getGroup(language);

 // write the appropriate hello world message to the logger.

 LOG.info(messages.getAttributeValue("hello_world"));

 // write a debug message

 LOG.debug(CINFO.DF_EXAMPLE, "this only prints if the correct debug

flag is set");

 // shutdown this application

 AppControl.instance().shutdown(0);

 }

 catch (DCFException e)

 {

 LOG.error(-1, "DCFException caught:\n", e);

 AppControl.instance().shutdown(1);

 }

 catch (Exception e)

 {

 LOG.error(-1, "Exception caught:\n", e);

 AppControl.instance().shutdown(1);

 }

 }

}

4. Create a wrapper script – The wrapper script is simply a convenience for Java applications. The

wrapper invokes the Java interpreter with the required options. (Note that many of the DCF’s Java

examples may use the same wrapper script – jrun_example.pl – that takes the class name that

defines the main() function as an argument.)

For this example, this script contains:

#!/usr/bin/perl -w

use strict;

use English;

use Env qw(DCF_CFG DCF_TMP);

use File::Basename;

my $myname = basename($0);

$ENV{"JAVA_NS"}="true";

exec ("java "

 . "-Dorg.omg.CORBA.ORBClass=com.sun.corba.se.internal.iiop.ORB "

 . "-Dorg.omg.CORBA.ORBSingletonClass=com.sun.corba.se.internal.iiop.ORB "

 . "-DDCF_CFG=\"${DCF_CFG}\" "

 . "-DDCF_TMP=\"${DCF_TMP}\" "

 . "com.lbs.examples.ex_jdcf_HelloWorld.ex_jdcf_HelloWorld "

 . "-appcfg /apps/defaults/ex_jdcf_HelloWorld "

 . "-CDS_a_use_fsys "

 . join(" ", @ARGV));

The Java arguments seen above are listed and explained below:

Page 90

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

-D property-name=property-value (multiple instances of this)

These four are always set for DCF Java applications, and are the Java equivalent of environment

variables

com.lbs.examples.ex_jdcf_HelloWorld.ex_jdcf_HelloWorld

This is the Java class name, i.e., the class that defines the “main” method.

appcfg /apps/defaults/ex_jdcf_HelloWorld

This tells the Application Control adapter where to find the configuration for the application.

This configuration data is generated automatically when the component is built.

-CDS_a_use_fsys

Tells the Configuration Data Service adapter to use the file system to access configuration data.

The default mode is to access configuration data via a server.

join(“”,@ARGV)

Appends any additional parameters that were passed to the script. For the ex_jdcf_HelloWorld

application, this would include the “-lang” param.

5. Build the application.

To build the application, simply type the command

perl –S dcfmake.pl

Invoking dcfmake.pl will perform the following steps for this example:

a) Read the cinfo.cfg file in the current working directory.

b) Read the component configuration for each required component in the cinfo.cfg.

Component configurations come from the

$DCF_USER_ROOT/devel/cfggen/components directory. That data was created when

dcfmake.pl built those components.

c) Recursively read component configurations for other required components.

d) Generate the component configuration for this component. This data is written to the file
$DCF_USER_ROOT/devel/cfggen/components/java_app/ex_jdcf_HelloWorld

e) Generate the application configuration for this component. This data is written to the file
$DCF_USER_ROOT/devel/cfggen/apps/defaults/ex_jdcf_HelloWorld

f) Generate the CINFO.java source file in the current directory. The CINFO class (which is

private to the component’s package) contains the debug-flag mask constants, as well as code

to initialize and update the debug flags value from the CDS database. CINFO also provides

convenience mechanisms for getting the instance configuration group for the component

within a particular application.

g) Generate the LOG.java source file in the current directory. The LOG class (which is private

to the component’s package) is simply a wrapper for the DCF LOG interface. It simplifies

checking debug flag settings in CINFO, and provides message header fields that remain

constant for the component. (In C++ pre-processor macros are typically used for this type of

work.)

h) Generate the make file. To avoid confusion with a handcrafted makefile, the file is called

makefile.dcf.

i) Invoke “make –f makefile.dcf”. Any arguments given to dcfmake.pl are forwarded

to make. After the make completes, the generated makefile is removed. You can have

dcfmake.pl leave the generated file by using the “-keep” option.

 Page 91

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

6. Update the configuration data service repository.

The developer can determine when to deploy any newly created or edited configuration data. This

can be useful if you are testing with non-default configurations, and do not want the fact that you

have rebuilt something to affect your working configuration files. To update the data, execute the

command:

perl –S update_cds.pl

This will copy all files from the temporary areas $DCF_USER_ROOT/devel/cfggen and

$DCF_USER_ROOT/devel/cfgsrc to the working area: $DCF_USER_ROOT/cfg. As the files are

copied, various macros are expanded, so for example the files in the working config can have the

correct port numbers, path names, etc.

The application is now ready to run!

5.5.2. Using the LOG interface – Logging from Java programs

Each Java component has a package private class named “LOG”. This class is generated by

dcfmake.pl in the file LOG.java. Component specific debug flags are generated in the package-

private file CINFO.java.

First, the LOG adapter must be initialized. Normally, all of the common services are installed at once,

during application initialization. This can be done with the lines:

com.lbs.LOG_a.LogClient_a.setup(args);

com.lbs.APC_a.AppControl_a.setupORB(args);

com.lbs.CDS_a.CFGDB_a.setup(args);

com.lbs.APC_a.AppControl_a.setup(args);

com.lbs.LogClient_a.setup(args);

Messages are logged using the following methods:

LOG.info(“this message will always print”);

LOG.error(-1, “this is an error”);

LOG.error(-1, “the stack trace contained in the exception (e) will print\n”, e);

LOG.debug(CINFO.DF_SHOW_GENERAL_FLOW, “this is a conditional debug message”);

Generally it is best to keep possibly expensive expressions like

("Here is a data set: " + ds.toString())

in conditionals, since in Java (and C#), the args to LOG.debug are evaluated before calling the method,

which then may decide to not log anything.

A better approach is to do something like what is illustrated in the following example:

if (CINFO.debug(CINFO.df_SHOW_GENERAL_FLOW)

{

 LOG.debug("com.oem.module.StoreSCP.DicomDataService_a.storeObject: dimse-message =

" + c_store_rq);

}

By wrapping the debug message in a conditional at least you’re not doing extra work when you are in

non-debug mode.

Page 92

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

5.5.3. Using the CDS interface

See language-specific class documentation for CDS.CFGGroup, CDS.CFGAttribute, and

CDS.CFGDB.

5.5.4. Using the APC interface

See language-specific on-line documentation for APC.AppControl.

5.6. Advanced DICOM Programming Examples

5.6.1. Using StorageCommitmentSCU

The StoreCommitSCU and StoreCommitSCUAgent classes provide the user with an interface to the

Storage Commitment Push Model SOP class as a Service Class User. The StoreCommitSCU class

allows the user to send a list of DICOM SOP instances to a Storage Commitment SCP for which storage

commitment is requested. The StoreCommitSCU class provides the interface for creating an

association, creating a transaction UID, and sending the appropriate N-ACTION DIMSE message. The

DicomDataService singleton’s commitRequestSent method will be called in order to notify the OEM’s

database that the commit has been requested.

After sending the requests via N-Action, the StoreCommitSCU can be configured to hold the outbound

association open. Otherwise, the StoreCommitSCUAgent class can be used to wait for inbound

associations. In either case, the SCP will send N-Event-Report DIMSE messages back to the SCU

(StoreCommitSCU). The DicomDataService singleton’s commitCompleted method will be called so

that the OEM can be updated with the commit completion status from the SCP.

Store related classes are in the com.lbs.DSS (DICOM Store Services) package.

5.6.1.1. Example – Send store commit requests, and receive StoreCommitClientListener
notifications

Send store commit requests and receive N-Event-Report notifications as objects are committed to long

term storage.

See the ex_nstorecommit_scu.exe example for a complete program which can optionally start a

StoreCommitSCUAgent in a new thread to receive incoming N-Event-Reports on a new association.

com.lbs.DSS.StoreCommitRequest request = new com.lbs.DSS.StoreCommitRequest();

//

// Put together the server_address.

//

String server_address = called_host_ + ":" + called_port_;

LOG.info("Called presentation address = " + server_address);

AssociationInfo ainfo = new AssociationInfo();

RequestedPresentationContext sc_ctx = new RequestedPresentationContext(1,

UID.SOPCLASSSTORECOMMITPUSHMODEL, new String[] { UID.TRANSFERLITTLEENDIANEXPLICIT,

UID.TRANSFERLITTLEENDIAN });

ainfo.calledPresentationAddress(server_address);

ainfo.calledTitle(called_ae_title_);

ainfo.callingTitle(calling_ae_title_);

ainfo.addRequestedPresentationContext(sc_ctx);

scu_ = new StoreCommitSCU(ainfo);

 Page 93

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

try

{

 // populate the referenced sop sequence from the command line args

 int count = 0;

 ReferencedSopSequence[] ref_sop_sequence = new

ReferencedSopSequence[file_list_.size()];

 request.transactionUid(DCMUID.makeUID());

 while (count < file_list_.size())

 {

 DicomFileInput dfi = new DicomFileInput((String)file_list_.elementAt(count));

 dfi.open();

 DicomDataSet dds = dfi.readDataSetNoPixels();

 dfi.close();

 // create a sequence item with the uids

 ReferencedSopSequence ref_sop_sequence_item = new ReferencedSopSequence();

 ref_sop_sequence_item.referencedSopclassUid(

dds.getElementStringValue(DCM.E_SOPCLASS_UID));

 ref_sop_sequence_item.referencedSopinstanceUid(

dds.getElementStringValue(DCM.E_SOPINSTANCE_UID));

 // add the sequence item to the vector of items

 ref_sop_sequence[count] = ref_sop_sequence_item;

 count++;

 }

 // add the vector of sequence items to the request, it will be converted to

 // a sequence element containing one data set item for each object in the

 // vector

 request.referencedSopSequence(ref_sop_sequence);

 scu_.requestAssociation();

 scu_.nAction(request, 10, 10);

 scu_.waitForNEvent(1);

 scu_.releaseAssociation();

 exit_status_ = 0;

 }

catch (Exception e)

{

 LOG.error(-1, "Exception caught:" + System.getProperty("line.separator"), e);

 System.err.println("test failed");

 exit_status_ = 1;

}

finally

{

 try

 {

 if ((scu_ != null) && scu_.connected())

 {

 scu_.releaseAssociation();

 }

 }

 catch (DCSException e)

 {

 LOG.error(-1, "Error releasing Association, aborting", e);

 scu_.abortAssociation();

 exit_status_ = 1;

 }

}

Page 94

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

5.6.2. Using Java MWLClient Classes

A common application of the DICOM protocol is querying an image manager for a list of scheduled

procedure steps. The simplest way to accomplish this using the DCF is to use the MWLSCU class.

MWLSCU provides a high level mechanism for interoperating with MWL SCPs via C-FIND DIMSE

messages.

MWLSCU functions identically to the QRSCU class (see the QRClient example for code examples,

section 5.3.7).

5.6.2.1. Example – ex_jmwl_scu

See $DCF_ROOT/devel/jsrc/com/lbs/examples/ex_jmwl_scu/ex_jmwl_scu.java for a

command line application that uses this class.

5.6.3. Using Java MPPSClient Classes

The MPPSClient is used to communicate with Modality Performed Procedure Step Service Class

providers or servers.

MPPSClient creates and updates instances of Modality Performed Procedure Step objects. It sends N-

Create and N-Set DIMSE messages to an MPPS SCP or server. The user instructs the MPPSClient to

connect to the SCP, and uses the n_set() and n_create() methods to send the appropriate DIMSE

messages.

5.6.3.1. Example – ex_jmpps_scu

See $DCF_ROOT/devel/jsrc/com/lbs/examples/ex_jmpps_scu/ex_jmpps_scu.java for a

complete console application example.

The method below will send the appropriate DIMSE N-CREATE or N-SET message to a MPPS Server.

 public void runJob()

 throws DCSException

 {

 //

 // Decide on whether to do an n-create or n-set

 //

 if(f_opt_create_ && f_opt_set_)

 {

 throw new DCSException("Cannot n-set and n-create at the same time");

 }

 //

 // Put together the server_address.

 //

 String server_address = host_ + ":" + port_;

 LOG.info("Called presentation address = " + server_address);

 AssociationInfo ainfo = new AssociationInfo();

 RequestedPresentationContext mpps_ctx =

 new RequestedPresentationContext((byte)1, UID.SOPPERFORMEDPROCEDURESTEP, new

String[] {ts_uid_});

 ainfo.calledPresentationAddress(server_address);

 ainfo.calledTitle(called_ae_title_);

 ainfo.callingTitle(calling_ae_title_);

 ainfo.addRequestedPresentationContext(mpps_ctx);

 scu_ = new MPPSSCU(ainfo);

 scu_.requestAssociation();

 Page 95

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

 CFGGroup mpps_cfg = null;

 try

 {

 mpps_cfg = CFGDB.instance().loadGroup(cfg_file_, true);

 }

 catch(CDSException cds_e)

 {

 LOG.error(-1, "Error loading mpps cfg file " + usage(), cds_e);

 System.exit(-1);

 }

 LOG.info("MPPS CFGGroup = " + mpps_cfg);

 DicomDataSet ds = new DicomDataSet(mpps_cfg);

 ModalityPerformedProcedureStep procedure =

 new ModalityPerformedProcedureStep(ds);

 if(f_opt_create_)

 {

 scu_.nCreate(procedure, 10);

 }

 else if(f_opt_set_)

 {

 scu_.nSet(procedure, 10);

 }

 scu_.releaseAssociation();

 exit_status_ = 0;

 }

5.6.4. Using Java Store, Q/R, and MWL Server-Related Classes

A common application of the DICOM protocol is in creating an image archive. An OEM may have

special requirements for how images and patient information are stored in a database. The DCF

provides APIs that are structured such that the OEM can easily customize the handling of image or

other DICOM datasets without the need to deal with the mechanics of negotiating associations, handling

sockets, PDUs or DIMSE messages.

The DicomDataService interface provides the mechanism for customizing the handling of DICOM

datasets. Generic DCF protocol handling objects such as StoreSCP, QRSCP (Query Retrieve), MWLSCP

(Modality Worklist) invoke DicomDataService methods to access the local storage facilities. The

reference implementation adapter for the DicomDataService interface stores objects in the file

system and provides minimal searching capabilities to support testing. Other implementations or

adapters can be written that behave differently.

5.6.4.1. Example – ex_jstore_scp

The example $DCF_ROOT/devel/jsrc/com/lbs/examples/ex_jstore_scp shows a simple

storage server that sends incoming DICOM objects to the file system using the default

DicomDataService_a (DICOM Data Service adapter) in

$DCF_ROOT/devel/jsrc/com/lbs/DDS_a. By installing a particular DicomDataService_a, all

incoming DICOM images are passed to the storeObject() method defined in that class.

The source file ex_jstore_scp.java contains the function main() which installs the

DicomDataService adapter, and enters the loop which waits for incoming DICOM associations.

Below is a listing of the source code:

//===

// Copyright (C) 2005, Laurel Bridge Software, Inc.

// 160 East Main St.

// Newark, Delaware 19711 USA

// All Rights Reserved

Page 96

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

//===

package com.lbs.examples.ex_jstore_scp;

import com.lbs.CDS.*;

import com.lbs.CDS_a.*;

import com.lbs.APC.*;

import com.lbs.APC_a.*;

import com.lbs.LOG_a.*;

import com.lbs.DCS.*;

import com.lbs.DSS.*;

/**

* Example Java Store Service Class Provider (SCP).

* Uses DCF StoreServer and StoreSCP classes, along with a

* locally defined DicomDataService adapter to implement

* a DICOM Storage server application.

*/

public class ex_jstore_scp

 implements AssociationConfigPolicyManager, AssociationListener

{

 private AssociationManager mgr_;

 private StoreServer store_server_;

 private VerificationServer verification_server_;

 public ex_jstore_scp(String args[])

 throws DCSException, CDSException

 {

 LOG.info("Creating new ex_jstore_scp");

 // Create an AssociationManager

 // You can override association manager settings after creating,

 // e.g., tcp-port, max-number-concurrent-assocs, max-total-assocs, etc.

 // For now, it will get them from proc-cfg/java_lib/DCS/AssociationManager.

 //

 mgr_ = new AssociationManager();

 // Run this line if you want AssociationManager to call

 // our getSessionSettings() each time an association is

 // requested. There can only be one association-config-policy-manager.

 // If you don't do this, you also don't need the

 // "implements AssociationConfigPolicyManager" above.

 mgr_.setAssociationConfigPolicyMgr(this);

 // Run this line if you want AssociationManager to call

 // our beginAssociation()/endAssociation() each time an association is

 // started/ended. There can be any number of association-listeners.

 // If you don't do this, you also don't need the

 // "implements AssociationListener" above.

 mgr_.addAssociationListener(this);

 // Create a StoreServer object which will register as an AssociationListener,

 // and create a StoreSCP object each time an association is requested.

 LOG.info("Creating new StoreServer Object");

 store_server_ = new StoreServer(mgr_);

 // Create a VerificationServer object (creates VerificationSCP's)

 LOG.info("Creating new VerificationServer Object");

 verification_server_ = new VerificationServer(mgr_);

 }

 /**

 * Ask AssociationManager to loop, waiting for connection requests, and handling

 * associations. Each time a socket connect is detected, AssociationManager

 * creates an instance of AssociationAcceptor that will handle all I/O for that

 * association.

 */

 Page 97

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

 public void runServer()

 throws DCSException

 {

 LOG.info("Starting ex_jstore_scp");

 mgr_.run();

 }

 /**

 * Implementation of AssociationConfigPolicyManager interface.

 * Here is where we optionally implement our custom policy of selecting

 * the configuration used for a particular association.

 */

 public DicomSessionSettings getSessionSettings(AssociationAcceptor assoc)

 throws AssociationRejectedException, AssociationAbortedException

 {

 // Get the association info from the current acceptor.

 AssociationInfo ainfo = assoc.getAssociationInfo();

 // Get some fields from the association info

 String called_ae = ainfo.calledTitle();

 String calling_ae = ainfo.callingTitle();

 //

 // Demonstrate a configuration policy that selects/creates session settings

 // based on the called-AE-title.

 //

 LOG.info("ex_jstore_scp: getting session settings for '" + called_ae + "'");

 //

 // Start with the default session settings. (Values for this come from

 // the current app/proc config group java_lib/DCS/default_session_settings.)

 //

 DicomSessionSettings session_settings = new DicomSessionSettings();

 //

 // We can do different things based on the AE, either by loading

 // a particular session settings configuration, or by modifying

 // an existing settings object.

 //

 if (calling_ae.trim().equals("ECHO_SCU") || called_ae.trim().equals("ECHO_SCP"

))

 {

 // do nothing if this is an echo request

 }

 else if (called_ae.trim().equals("StoreSCP1"))

 {

 // Change the default settings by adding a

 // pre- and post-processing scripts.

 //

 // Note that you either need a full path to the script, or it must be in the

 // current working directory of this process (if you start this app via

 // the web interface, that cwd will be $DCF_ROOT/httpd/cgi-bin).

 session_settings.setPreAssociationScript("perl pre_assoc.pl");

 session_settings.setPostAssociationScript("perl post_assoc.pl");

 }

 else if (called_ae.equals("StoreSCP2"))

 {

 // Add a filter set (by reference) to the default session settings.

 String filter_cfg_name = "/dicom/filter_sets/example_filter.cfg";

 session_settings.setInputFilterCfgName(filter_cfg_name);

 }

 else

 {

 // Load the session settings from a CFGGroup, based on the name

 // of the called AE.

 String session_cfg_name = "/dicom/example_session_" + called_ae + ".cfg";

Page 98

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

 CFGGroup session_cfg = null;

 try

 {

 session_cfg = CFGDB.instance().loadGroup(session_cfg_name, true);

 session_settings = new DicomSessionSettings(session_cfg);

 }

 catch(CDSException e)

 {

 LOG.error(-1, "Unable to load session cfg: " +

 session_cfg_name + " - " + e + "\nRejecting the association...");

 // Throwing AssociationRejectedException results in the association being

rejected.

 // Alternately, we could let them in with the default, or some other

settings.

 // Note: previous version required an AssociateRejectPDU here, now the

exception

 // class builds that behind the scenes.

 throw new AssociationRejectedException(

 PDUAssociateReject.RESULT_PERMANENT,

 PDUAssociateReject.SOURCE_SERVICE_USER,

 PDUAssociateReject.REASON_BAD_CALLED);

 }

 }

 return session_settings;

 }

 /**

 * Optional implementation of AssociationListener interface.

 *

 * Indicates that a new association has been created.

 * The AssociationAcceptor has selected configuration

 * settings for the association, and has processed the

 * A-Associate-Request PDU. The association has not yet

 * been accepted.

 * @param assoc the object handling the association.

 * @throws AssociationRejectedException Indicates that

 * the association should be rejected immediately.

 * @throws AssociationAbortedException Indicates that

 * the association should be aborted immediately.

 */

 public void beginAssociation(AssociationAcceptor assoc)

 throws AssociationRejectedException, AssociationAbortedException

 {

 LOG.info("Association has started:\n" + assoc.getAssociationInfo());

 }

 /**

 * Optional implementation of AssociationListener interface.

 *

 * Indicates that an association has ended.

 * @param assoc the object handling the association.

 */

 public void endAssociation(AssociationAcceptor assoc)

 {

 LOG.info("Association has ended.");

 }

 /**

 *

 * Invoke with the following optional arguments:

 * -CDS_a_use_fsys Do not require DCDS_Server.

 * default is to expect it to

 * be running. If this option is

 * enabled, shutdown messages and

 Page 99

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

 * runtime changes to debug settings

 * are unsupported.

 * -apc <proc-attr-name>=<value>

 * Overrides any setting in the process

 * configuration.

 */

 public static void main(String args[])

 {

 try

 {

 LOG.info("Setting up basic services");

 AppControl_a.setupORB(args);

 // uncomment if you want to default to no DCDS-Server

 //CFGDB_a.setFSysMode(true);

 CFGDB_a.setup(args);

 AppControl_a.setup(args, CINFO.instance());

 // uncomment if you want to default to console logging - else

 // LOG_a config specifies output files, possibly sends to DLOG_Server, etc.

 // LOGClient_a.setConsoleMode(true);

 LOGClient_a.setup(args);

 // install our custom DicomDataService.

 LOG.info("Setting up DDS_a service");

 DicomDataService_a.setup(args);

 // create store scp object

 ex_jstore_scp scp = new ex_jstore_scp(args);

 // start accepting connections

 scp.runServer();

 LOG.info("ex_jstore_scp exiting!");

 }

 catch(Exception e)

 {

 LOG.error(-1, "ERROR: " + e);

 }

 if (AppControl.isInitialized())

 {

 AppControl.instance().shutdown(0);

 }

 System.exit(0);

 }

}

Note: To support MWL and Query Retrieve, the findObjects(), findObjectsForTransfer(),

and loadObjects() methods would have to be implemented. See example implementations, which

are listed below.

5.6.4.2. Example – ex_jqr_scp

The directory $DCF_ROOT/devel/jsrc/com/lbs/ex_jqr_scp shows a simple Query/Retrieve

server that searches a “canned” set of DICOM objects in response to C-FIND requests and C-MOVE

and C-GET requests and performs the appropriate matching. It either returns the list of found objects

for a C-FIND or performs C-STORE operations if a C-MOVE or a C-GET was requested.

See $DCF_ROOT/devel/jsrc/com/lbs/examples/ex_jqr_scp/ex_jqr_scp.java. This

program is almost identical to ex_jstore_scp.java with the exception that it uses QRServer class

Page 100

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

instead of StoreServer class. The directory $DCF_ROOT/devel/jsrc/com/lbs/ex_jqr_scp

shows a simple Query/Retrieve server that searches a “canned” set of DICOM objects in response to C-

FIND requests and C-MOVE and C-GET requests and performs the appropriate matching. The list of

“canned” objects is created from thefiles found in $DCF_ROOT/test/qr directory. It either returns the

list of found objects for a C-FIND or performs C-STORE operations if a C-MOVE or a C-GET was

requested.

5.6.4.3. Example – ex_jmwl_scp

The directory $DCF_ROOT/devel/jsrc/com/lbs/ex_jmwl_scp shows a simple Modality Worklist

server that searches a “canned” set of DICOM objects in response to C-FIND requests performs the

appropriate matching. It returns the list of found objects for a C-FIND. The list of “canned” objects is

created from thefiles found in $DCF_ROOT/test/worklist directory.

See $DCF_ROOT/devel/jsrc/com/lbs/examples/ex_jmwl_scp/ex_jmwl_scp.java. This

program is almost identical to ex_jstore_scp.java with the exception that it uses MWLServer class

instead of StoreServer class.

5.6.4.4. Using the MWL Server as an MPPS Server

Both the C# and Java worklist server examples (ex_nmwl_scp and ex_jmwl_scp) are also MPPS

servers by default.

MPPS N-CREATE messages and N-SET messages are stored to the currently installed

DicomDataService adapter. If you are using the default file system mode DicomDataService

adapter, you can tell DicomDataService to store the both the command and data data-sets from N-

CREATE and N-SET messages. This is useful if you want to be able to tell whether the stored object

came from an N-CREATE or an N-SET message as this information is sent in the Command Data set

of a DIMSE message. This functionality can be turned on by setting the appropriate CFG attribute to

“YES”, e.g.,

/apps/defaults/ex_jmwl_server/java_lib/DDS_a/save_command_data YES

5.6.4.5. Example – Server Objects

The default example implementations for findObjects(), findObjectsForTransfer(), and

loadObjects() can be found in $DCF_ROOT/devel/jsrc/com/lbs/DDS_a/DicomDataService_a.java.

These are also similar to the examples found in ex_jstore_scp.java.

5.6.4.6. Example – StoreSCP: Implementing a custom storeObject method

The following example illustrates how you could create your own DicomDataService adapter and

implement the storeObject() method.

Note: your DicomDataService adapter class can have any name or be part of any package. The only

requirements on your implementation are that:

• It must implement the abstract class com.lbs.DDS.DicomDataService; and

• You must “install” that implementation before the first time it will be used: you should add a

static method called setup() to your implementation to “install” it.

Each time an incoming C-STORE-RQ message is received by your application, the cStoreRQ()

method of the StoreSCP object is called. This method calls

DicomDataService.instance().storeObject(AssociationAcceptor, DimseMessage).

 Page 101

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

This calls the installed implementation of DicomDataService, which in this case will be your

customized adapter.

Notes:

• If an error occurs in DicomDataService.storeObject(), you should throw an exception,

which is logged by StoreScp.cStoreRq() method; then StoreSCP sets the error text of the

exception into the DIMSE response message that will be returned to the Store SCU.

• You should do any logging you need to do regarding errors before throwing that exception.

• If you wish to create a new directory for each association or file, you should do that in the

storeObject() method as you will have access to the AssociationInfo object that is

contained in the AssociationAcceptor object passed into the

DicomDataService.storeObject() method.

The following illustrates what part of your DicomDataService adapter would look like:

package com.oem.StoreTest;

import com.lbs.DDS.*;

public class OEMDataServiceAdapter extends com.lbs.DicomDataService

{

 //protected constructor

 //You can only create one of things be calling the public static setup method.

 protected OEMDataServiceAdapter(String args[])

 {

 //put initialization code

 }

 //no default constructors allowed

 protected OEMDataServiceAdapter

 {

 LOG.error(-1, "illegal use of default constructor");

 }

 //Here’s where you add your code to store images to your backend

 public DicomPersistentObjectDescriptor storeObject(

 AssociationAcceptor association_acceptor,

 DimseMessage c_store_rq)

 throws DDSException

 {

 //Your implementation goes here

 }

 //do something like the following for the other abstract methods

 //in DicomDataService base class.

 public abstract DicomDataSet loadObject(

 DicomPersistentObjectDescriptor dpod,

 boolean f_read_pixel_data)

 throws DDSException

 {

 throw new DDSException(“loadObject unimplemented”)

 }

 //Add a public setup method to install your implementation

 public static synchronized void setup(String args[])

Page 102

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

 throws DDSException

 {

 OEMDataServiceAdapter instance = new OEMDataServiceAdapter(args);

 //base class method that will set a new installed implementation

 setInstance(instance);

 }

} //end of class OEMDataSetAdapter

In your application’s main() method, before you begin accepting incoming associations, call your

setup() method. For example:

public static void main(String args[])

{

...

 com.oem.StoreTest.OEMDataServiceAdapter.setup(args);

 //begin accepting associations

...

}

You could, in fact, simply replace the following line in ex_jstore_scp.java

DicomDataService_a.setup(args);

with this line:

com.oem.StoreTest.OEMDataServiceAdapter.setup(args);

and then ex_jstore_scp.java will use your new DicomDataService adapter’s storeObject()

method whenever an incoming DICOM Image is stored.

The other methods in the DicomDataService interface support operations like finding previously

stored objects (findObjects() method) or loading previously stored objects (loadObject()

method); this functionality is used to support the Query/Retrieve or Worklist SOP classes.

5.6.4.7. Additional coding examples:

• For additional information on how the DicomDataService is called, see the example in section

6.6.4.3.

• For information on customizing behavior based on custom DicomSessionSettings, see the

notes in section 6.6.4.4.

5.6.4.8. Writing a Custom DICOM SCP

You can extend
%DCF_ROOT%\devel\jsrc\com\lbs\examples\ex_j_oem_scp\ex_j_oem_scp.java.

5.7. DICOM Compression Transfer Syntax Support for Java

DCF Java applications can handle DICOM datasets in any transfer syntax for non-pixel data operations

provided that compression pass through mode is turned on (except for DICOM Deflated Little Endian

Syntax and JPIP Transfer syntaxes).

DCF Java applications can compress and decompress data sets in these encapsulated transfer syntaxes:

• 1.2.840.10008.1.2.4.5 RLE Lossless

• 1.2.840.10008.1.2.4.50 JPEG 8 bit lossy

 Page 103

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

• 1.2.840.10008.1.2.4.51 JPEG 12 bit lossy

• 1.2.840.10008.1.2.4.57 JPEG lossless

• 1.2.840.10008.1.2.4.70 JPEG lossless (predictor selection=1)

• 1.2.840.10008.1.2.4.90 JPEG-2000 lossless

• 1.2.840.10008.1.2.4.91 JPEG-2000 lossy

RLE Lossless transfer syntax is supported for compression of single frame data sets. RLE Lossless

transfer syntax is supported for the decompression of single frame and multi-frame data sets.

Look at the settings under the DCS section of an application configuration file or in a DCS component

configuration file to see options that can be configured for compression.

Note: If you are using the Aware, Inc., JPEG library, that this does not support .57.

5.7.1. Example – ex_jdcf_filter: Uncompressed to Compressed

Use ex_jdcf_filter to convert an existing DICOM file in a non-compressed transfer syntax to JPEG-2000

compressed.

Create the following config file, compress.cfg:

[filter_info]

input_file = C:/temp/test.dcm

output_file = C:/test_j2k.dcm

output_ts_uid = 1.2.840.10008.1.2.4.90

part10_output = true

filter_count = 0

Run the ex_jdcf_filter app, using the Perl wrapper for convenience:

ex_jdcf_filter.pl –f file:/compress.cfg

5.7.2. Example – ex_jdcf_filter: Compressed to Uncompressed

Use ex_jdcf_filter to convert an existing DICOM file in a JPEG-2000 compressed transfer syntax to

Explicit-Little-Endian uncompressed.

Create the following config file decompress.cfg:

[filter_info]

input_file = C:/temp/test_j2k.dcm

output_file = C:/test_decompressed.dcm

output_ts_uid = 1.2.840.10008.1.2.1

part10_output = true

filter_count = 0

Run the ex_jdcf_filter app, using the Perl wrapper for convenience:

ex_jdcf_filter.pl –f file:/decompress.cfg

5.8. JAI – DCF integration for Java

The DCF includes JAI (Java Advanced Imaging) integration, which provides facilities for converting

between DICOM files/datasets and various supported JAI file types.

Notes:

Page 104

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

• The JAI is not used by the DCF for DICOM image compression.

The class com.lbs.DCS.JAIUtil still uses Java Advanced Imaging (JAI) and Java Advanced

Imaging I/O (JAI I/O). If you're not using that class, and you are not using

DicomEncapsulatedCodecJAI, which is not used by default, then you don't need JAI or JAI I/O.

• The JPEG and JPEG2000 codec functionality is now provided by default by our DicomTSCW

(Transfer Syntax Codec Wrapper) plugin library. This is a C/C++ implementation of the low level

compress/decompress functionality that is shared by C++, Java, and C# DCF implementations.

One of the reasons we adopted this approach, and retired the JAI/ImageIO based codecs as the

default, was that there was limited or no support for 64 bit JAI I/O.

Three example applications are provided to demonstrate this functionality.

5.8.1. Example – ex_jdcf_dcm2jai: Convert a DICOM file to a JAI type

ex_jdcf_dcm2jai - converts a DICOM file to one of the supported JAI types. This application can

convert DICOM files to/from JAI types: jpg, JPEG2000, bmp, tiff, png, pnm, etc.

Support is provided for DICOM images that are:

• Grayscale, 8 or 16 bit

• MONOCHROME2,

• RGB pixel interleaved, and

• RGB planar.

Data that is signed (pixel-representation==1) is first converted to unsigned, since many of the

destination formats or supporting software do not handle signed data properly. Certain conversions are

not supported, since the destination image format may not support the data format in the DICOM file.

For instance, a 16 bit DICOM image can not be converted directly to JPEG.

Facilities for performing certain other conversions are available, in particular the option “-8” will cause

a window-level LUT to be created and applied to 16 bit data so that it can be saved in an 8-bit format,

e.g., JPEG. The option “-16” will cause a linear LUT to be created and applied to 9-15 bit data.

Currently, the JPEG-2000 codec saves 9-15 bit data correctly, but when j2k files are reloaded, the data

is assumed to be 16 bit, and may display proportionally darker than the original.

Example conversions:

convert 12 bit DICOM to JPEG:

jrun_example.pl com.lbs.examples.ex_jdcf_dcm2jai.ex_jdcf_dcm2jai -i

12bit.dcm -t jpg -o 8bit.jpg -8

convert 8 bit DICOM to bmp:

jrun_example.pl com.lbs.examples.ex_jdcf_dcm2jai.ex_jdcf_dcm2jai -i

8bit.dcm -t bmp -o 8bit.bmp

convert 12 bit DICOM to JPEG2000:

jrun_example.pl com.lbs.examples.ex_jdcf_dcm2jai.ex_jdcf_dcm2jai -i

12bit.dcm -t jpeg2000 -o 16bit.j2k -16

Note: you could create an individual “.pl” wrapper script that would do the same as running

jrun_example.pl or as:

java com.lbs.examples.ex_jdcf_dcm2jai

This functionality can easily be added to your SCU or SCP applications for more seamless integration.

 Page 105

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

5.8.2. Example – ex_jdcf_jai2dcm: Convert JAI types to a DICOM file

The “-h <header-cfg>” option allows you to attach additional DICOM tags to the created image.

Examples:

jrun_example.pl com.lbs.examples.ex_jdcf_jai2dcm.ex_jdcf_jai2dcm -i

8bit.jpg -o 8bit.dcm

jrun_example.pl com.lbs.examples.ex_jdcf_jai2dcm.ex_jdcf_jai2dcm -i

test.j2k -o test.dcm -h dcm_header.cfg

Note: for a fuller description of this example, run:

 jrun_example.pl com.lbs.examples.ex_jdcf_jai2dcm.ex_jdcf_jai2dcm -help

Currently only grayscale source images are properly converted. Support for various color formats will

be included in the next release.

5.8.3. Example – ex_jdcf_dcmview: View a DICOM Image file

This utility very simply displays the selected image.

Example:

jrun_example.pl com.lbs.examples.ex_jdcf_dcmview.ex_jdcf_dcmview test.dcm

5.8.4. Example – Writing a JPEG Image with Java

The following code snippets illustrate the basic steps required to output a JPEG version of a DICOM

image.

// for writing JPEGs

import java.io.*;

import com.sun.image.codec.jpeg.*;

//===

// Saving Dicom image as JPEG

//===

// Assuming we have the following Strings:

// String dicomfilename; // input

// String jpegfilename; // output

// Step 1: Get Dicom image as a RenderedImage

//---

// Can be done with a DicomDataSet, using the JAIUtil package,

// and the following sequence:

BufferedImage b_image;

try

{

 DicomFileInput dfi = new DicomFileInput(dicomfilename);

 DicomDataSet dds = dfi.readDataSet();

 RenderedImage r_image = JAIUtil.dataSetToRenderedImage(dds, false, false);

 // Cast to BufferedImage (which is superclass of RenderedImage)

 b_image = (BufferedImage)r_image;

}

catch(Exception e)

{

 System.err.println("Error: " + e.toString());

}

// Step 2: Create an output file stream

Page 106

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

//---

FileOutputStream filestream;

try

{

 filestream = new FileOutputStream(jpegfilename);

}

catch (Exception e)

{

 System.err.println("Error opening output file: " + e.toString());

 filestream = null;

}

// Step 3: Create a JPEGImageEncoder

//---

// Making use of the com.sun.image.codec package:

JPEGImageEncoder encoder;

try

{

 encoder = JPEGCodec.createJPEGEncoder(filestream);

}

catch (Exception e)

{

 System.err.println("Error encoding image: " + e.toString());

 encoder = null;

}

// Step 4: Perform the encoding, which writes the file

//---

try

{

 encoder.encode(b_image);

}

catch (Exception e)

{

 System.err.println("Error encoding image: " + e.toString());

}

// Step 5: Close the file

//---

try

{

 filestream.flush(); // probably not necessary

 filestream.close();

}

catch (Exception e)

{

 System.err.println("Error closing output file: " + e.toString());

}

 Page 107

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

6. C# Programming Examples

This section presents a variety of C# programming examples for common DICOM integration tasks. See

$DCF_ROOT/devel/cssrc/examples/ for the complete working source code for these and

additional examples.

This chapter includes the following sections:

• DICOM Programming Examples section shows how simple DICOM related tasks are performed.

• Common Services Examples section covers use of the DCF framework services.

• Advanced DICOM Programming Examples covers some more complex server concepts.

For additional information, see also

• Chapter 7 – The DCF Development Environment

• Chapter 13 – Deploying a DCF-based application

• Section 6.4 Deploying a Simple C# Standalone Application

6.1. Running Example Servers

Running the DCF tools and/or servers via the DCF Remote Service Interface generally makes running

these examples easier. Taking this approach allows easy access to convenient tools for starting and

stopping DCF server processes, viewing log files, and controlling trace/debug settings.

Start the Apache web server and open the DCF Remote Service Interface. In a Windows environment

this is all handled for you by the startup script:

Select “Start” → “All Programs” → “DICOM Connectivity Framework” →

“DCF Service Interface”

This command runs an Apache web server in its own window and invokes the default browser client to

display the DCF home page, called the “DCF Remote Service Interface”.

Alternately, if you prefer a manual approach, type “run_apache.pl” from a DCF command window,

and then use your favorite web browser to browse to “localhost:8080”, which will display the DCF

home page.

Page 108

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

6.2. Using the DCF with MS Visual Studio .NET 2003/2005 for C#

Notes:

• You must launch Visual Studio from a DCF Command Prompt so that the correct environment is

available to Visual Studio (the environment file is %DCF_ROOT%\dcf_vars.bat if you want to

permanently set the environment, but that is not recommended).
Select “Start” → “All Programs” → “DICOM Connectivity Framework” →

“DCF Command Prompt”

• DCF assemblies are registered in the .NET “Global Assembly Cache” during the toolkit

installation. This removes the restriction that the DLL files must by collocated with any

executable that uses them.

6.2.1. Opening an Existing C# Example Project

You must launch Visual Studio so that it starts with the DCF environment. This may be done in a few

ways:

1. You may launch it from the Start menu:
Select “Start” → “All Programs” → “DICOM Connectivity Framework” →

“Start Visual Studio with DCF environment”

2. There may also be a shortcut on the Windows Desktop that does the same thing as the Start Menu

option, if you chose to create the shortcut during the DCF installation process.

3. Alternately, you may launch Visual Studio from a DCF Command Prompt:
Select “Start” → “All Programs” → “DICOM Connectivity Framework” →

“DCF Command Prompt”

Once you are at a DCF Command Prompt, you now have two choices:

• You may start Visual Studio by typing devenv and then navigate to an example project

and open it using Visual Studio’s GUI menus.

Or

• You can change directory to the C# examples directory of interest and run the desired

.csproj file, which will cause Visual Studio to start and open the selected project.

Assume you choose to work from the DCF Command Prompt and choose the second option and you

are interested in the example, ex_ndcf_dump. (This example shows how to read a DICOM data set

from a file, and write a formatted representation of that data to the console.)

• Open a DCF Command prompt:
“Start” → “All Programs” → “DICOM Connectivity Framework” → “DCF

Command Prompt”

• Change to the example directory:
cd %DCF_ROOT%\devel\cssrc\examples\ex_ndcf_dump

• To open the example project in Visual Studio, type the name of the project file and hit the Enter

key:
ex_ndcf_dump.csproj

• Alternately, to run the example and not open Visual Studio, type the name of the example and hit

the Enter key. For this example the command line invocation requires a file to dump:
ex_ndcf_dump %DCF_ROOT%\test\images\test.dcm

 Page 109

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

You may select other C# examples to view and/or run by making the appropriate substitutions. All C#

examples are found in: %DCF_ROOT%\devel\cssrc\examples.

6.2.2. Quick Start - Using create_cs_comp.pl to generate VS project files and source

code

You can run the script %DCF_ROOT%\bin\create_cs_comp.pl. This interactive script will generate

a C# source file template and a cinfo.cfg file. It will then invoke dcfmake.pl which creates .csproj file,

and DCF metadata files LOG.cs and CINFO.cs You can then open the .csproj file in Visual Studio

2003/2005 and immediately begin writing your DICOM application.

Launch Visual Studio from a DCF Command Prompt, see note above in Section 6.2.1.

6.2.3. Using dcfmake.pl to generate a .csproj file

If you look at the directory %DCF_ROOT%\devel\cssrc\examples\ex_necho_scu, you will see

a file called cinfo.cfg. See the “HelloWorld” example for information on cinfo.cfg files. When

run, dcfmake.pl uses the cinfo.cfg file (short for component information configuration file) to

determine what .NET assemblies and DCF configuration information a given application is going to

need. With this information dcfmake.pl can generate a .csproj file.

There are two basic approaches that you may use to get started:

• Run perl –S dcfmake.pl -g to generate files (LOG.cs and CINFO.cs) only and not run the

compiler.

• Run perl –S dcfmake.pl –g –k to generate the LOG.cs and CINFO.cs files and the

.csproj file, but not run the compiler. After this you can use the VS IDE for building and

debugging.

• Run perl –S dcfmake.pl once to generate the LOG.cs and CINFO.cs files and a .csproj file

to get you started, then you may edit the project (.csproj) from the IDE, but be wary that (when

or if) you need to run dcfmake.pl again your modified project file WILL be over written.

Launch Visual Studio from a DCF Command Prompt, see note above.

6.2.4. Manually Creating C# Projects from MS Visual Studio 2003/2005 IDE

Launch Visual Studio from a DCF Command Prompt, see note above in Section 6.2.1.

To use a DCF assembly in your .cs source file, for example “LaurelBridge.DCS”, which is the

“DICOM Core Services” class library, follow these steps:

• Add “using LaurelBridge.DCS” to the top of your .cs source file:

• Then from the Visual Studio.NET toolbar, select Project->Add Reference….

• Make sure the .NET tab is selected. Then click “Browse”.

• Go to the directory %DCF_ROOT%\lib and select the file LaurelBridge.DCS.dll.

You should follow this same process for any assembly you wish to use directly. Note that currently, all

DCF C#.Net assemblies are prefixed with “LaurelBridge.”. You should not attempt to reference the

standard C++ dll’s (prefixed with “DCF_”) from C# projects.

Page 110

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

6.3. DICOM Programming Examples

6.3.1. DICOM File Access

Reading and writing DICOM format files is easy using the DicomFileInput and DicomFileOutput

classes. Files can be read in Implicit Little Endian, Explicit Big or Little Endian transfer syntax

encodings, in either the Part-10 format or the Mallinckrodt (de facto non-part-10) format.

The DCF allows the OEM to add additional transfer syntax codec objects that are then available to all

DCF based applications, to support additional transfer syntaxes, such as proprietary compression or

encryption formats.

Using the DCF Filter plug-in technology users or developers can add one or more data set filters to

DicomFileInput or DicomFileOutput objects. You can choose ready to use DCF filters or create a

custom filter. See the section on Filters for more information. (See Appendix D:)

6.3.1.1. Example – Open a DICOM file

Open a DICOM file and display a particular element’s value (for speed, don’t read the pixel data

element).

DicomFileReader dfi = new DicomFileReader(“myfile.dcm”);

DicomDataSet dds = dfi.readDataSetNoPixels();

System.Console.WriteLine(“patients name = {0}”, dds.getElementStringValue(

DCM.E_PATIENTS_NAME));

//

// or get the DicomElement and use its ToString() method to show value, length, etc

//

DicomElement e = dds.findElement(DCM.E_PATIENTS_NAME);

System.Console.WriteLine(“patients name element = {0}”, e);

6.3.1.2. Example – Create a DICOM file

Create a new DICOM file containing a minimal image, explicitly setting attributes

// create a simple image with a horizontal gradient wedge

int rows = 480;

int cols = 640;

byte[] pixels = new byte[rows*cols];

for (int r = 0; r < rows; r++)

{

int row_offset = r*cols;

 for (int c = 0; c<cols; c++)

 {

 pixels[row_offset+c] = (byte)c;

 }

}

// Create a DicomDataSet

DicomDataSet dds = new DicomDataSet();

//

// Create image header elements using the DicomDataSet convenience methods:

// insert(AttributeTag, string)

// insert(AttributeTag, int)

// These will use DicomElementFactory to create the appropriate DicomElement subclass

// and add it to the data set.

//

// Note also the use of DicomDataDictionary to create a new UID.

 Page 111

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

//

dds.insert(DCM.E_SOPCLASS_UID, DCM.UID_SOPCLASSUS);

dds.insert(DCM.E_SOPINSTANCE_UID, DicomDataDictionary.makeUID());

dds.insert(DCM.E_ROWS, rows);

dds.insert(DCM.E_COLUMNS, cols);

dds.insert(DCM.E_PHOTOMETRIC_INTERPRETATION, “MONOCHROME2”);

dds.insert(DCM.E_BITS_ALLOCATED, 8);

dds.insert(DCM.E_BITS_STORED, 8);

dds.insert(DCM.E_HIGH_BIT, 7);

dds.insert(DCM.E_SAMPLES_PER_PIXEL, 1);

dds.insert(DCM.E_PIXEL_REPRESENTATION, 0);

//

// for VM>1, we create elements explicitly

//

DicomOBElement e_pixel_data = new DicomOBElement(E_PIXEL_DATA, pixels);

dds.insert(e_pixel_data);

// save to a file

DicomFileOutput dfo = new DicomFileOutput(“myfile.dcm”);

dfo.writeDataSet(dds);

dfo.close();

6.3.1.3. Example – Create a DICOM file from Config Group Data

Create a new DICOM file using text data provided in the form of a CFGGroup

// create a CFGGroup object either by using CFGDB to read one from a file

// or using CFGGroup API. In DCF CFG format it might look like:

//

// [dataset]

sop class uid

0008,0016 = 1.2.840.10008.5.1.4.31

sop instance uid

0008,0018 = 1.2.3.4.1.100

Accession Number

0008,0050 = 111

Referring Physician

0008,0090 = Dr. Nick

referenced study sequence

sop class uid

0008,1110.0008,1150 = 1.2.3.4.5

sop instance uid

0008,1110.0008,1155 = 1.2.3.4.100

#patient name

0010,0010 = Simpson^Homer

#patient id

0010,0020 = 112233

CFGGroup g = CFGDB.instance().loadGroup(“dataset.cfg”);

DicomDataSet dds = new DicomDataSet(g);

DicomFileOutput dfo = new DicomFileOutput(“myfile.dcm”);

dfo.writeDataSet(dds);

dfo.close();

Page 112

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

6.3.1.4. Example – Open, Modify, and Save a DICOM file

Open a DICOM file, modify the pixel data, and save to a new file.

using System;

using LaurelBridge.DCS;

namespace ex_ndcf_ModPixelData

{

/// <summary>

/// Summary description for Class1.

/// </summary>

class Class1

{

 /// <summary>

 /// The main entry point for the application.

 /// </summary>

 [STAThread]

 static void Main(string[] args)

 {

 DicomFileInput dfi = new DicomFileInput();

 dfi.open("C:/temp/in.dcm");

 DicomDataSet dds = dfi.readDataSet();

 dfi.close();

 // get some of the basic image header fields. Use the DicomDataSet

 // convenience methods to get integer values for these.

 int rows = dds.getElementIntValue(DCM.E_ROWS);

 int cols = dds.getElementIntValue(DCM.E_COLUMNS);

 int bits_allocated = dds.getElementIntValue(DCM.E_BITS_ALLOCATED);

 int bits_stored = dds.getElementIntValue(DCM.E_BITS_STORED);

 int pixel_count = rows*cols;

 // get the pixel data element.

 DicomElement e_pixel_data = dds.findElement(DCM.E_PIXEL_DATA);

 // get a C style pointer to the pixels – this locks the

 // element’s data buffer in memory,

 // until “releaseBinaryData” is called.

 // IntPtr’s can be used to create BitMap objects, or can be passed

 // to a COM C++ object.

 System.IntPtr p_raw_pixel_data = e_pixel_data.getBinaryData();

 // alternately, get the pixels as an array

 // Note that, DICOM defines two possible types for pixel data

 // OB (Other byte), and OW (Other word). We cast our DicomElement

 // to the appropriate derived class.

 //

 if (e_pixel_data.VR == DCM.VR_OB)

 {

 byte[] pixel_data = ((DicomOBElement)e_pixel_data).getOBData();

 byte[] new_pixel_data = new byte[pixel_count];

 // error if pixel_count != pixel_data.Length;

 process8bitImageData(pixel_data, new_pixel_data,

 bits_stored, rows, cols);

 dds.insert(new DicomOBElement(DCM.E_PIXEL_DATA,new_pixel_data));

 }

 else if (e_pixel_data.VR == DCM.VR_OW)

 {

 short[] pixel_data = ((DicomOWElement)e_pixel_data).getOWData();

 short[] new_pixel_data = new short[pixel_count];

 // error if pixel_count != pixel_data.Length;

 process16bitImageData(pixel_data, new_pixel_data,

 bits_stored, rows, cols);

 dds.insert(new DicomOWElement(DCM.E_PIXEL_DATA,new_pixel_data));

 }

 // else error

 // give the object a new UID. There are other attributes

 // that should also be set to

 Page 113

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

 // indicate that this is a “derived image”. That is beyond the scope of

 // this example.

 dds.insert(DCM.E_SOPINSTANCE_UID, DicomDataDictionary.makeUID());

 // save the data set with the new pixel data

 DicomFileOutput dfo = new DicomFileOutput();

 dfo.open("C:/temp/out.dcm", UID.TRANSFERLITTLEENDIAN, false);

 dfo.writeDataSet(dds);

 dfo.close();

 }

}

}

6.3.2. Using VerificationClient

The most basic network service class in DICOM is the Verification service class. An SCU requests an

association with an SCP, sends a C-Echo-Request DIMSE message, and waits to receive a C-Echo-

Response DIMSE message.

In addition to the command line application (dcf_echo_scu), and the Java and C++ APIs, the

LaurelBridge.DCS.VerificationClient class provides this functionality to C# developers.

(See also the C# console app in %DCF_ROOT%\devel\cssrc\examples\ex_necho_scu.)

6.3.2.1. Example – Connect to a Verification SCP

Note the finally block at the end of this code block. If there is an error on connecting to an SCP or

during the connection the SCU is not necessarily disconnected. The “finally” block in this example

checks that the client is non-null and that the client is connected, then performs an association release

(it could also abort if necessary).

int status;

VerificationSCU client = null;

try

{

 if(args.Length < 3)

 {

 throw new DCFException(usage_);

 }

 Framework.FSysModeCFGDB = true;

 Framework.ConsoleModeLogger = true;

 Framework.initDefaultServices(args, CINFO.Instance);

 // enable selected debug/trace messages from the DCS library:

 DCS.CINFO.Instance.setDebugFlags(

 DCS.CINFO.df_DUMP_ACSE |

 DCS.CINFO.df_SHOW_DIMSE_READ |

 DCS.CINFO.df_SHOW_DIMSE_WRITE);

 client = new VerificationSCU("ECHO_SCU", args[0], args[1] + ":" + args[2]);

 client.requestAssociation();

 client.cEcho(10);

 System.Console.Error.WriteLine("test passed");

 status = 0;

}

catch (System.Exception e)

{

 LOG.error(- 1, "Exception caught:\n", e);

 System.Console.Error.WriteLine("test failed");

Page 114

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

 status = 1;

}

finally

{

 try

 {

 if ((client != null) && client.Connected)

 {

 client.releaseAssociation();

 }

 }

 catch (DCSException e)

 {

 LOG.error(- 1, "Error releasing Association, aborting", e);

 client.abortAssociation();

 status = 1;

 }

}

Framework.shutdown(status);

System.Environment.Exit(status);

6.3.3. Using StoreClient

The StoreClient class provides a powerful and easy to use interface to DICOM archives or other

storage providers. The user does not need to be concerned with any of the complexities of the DICOM

storage service class protocol. Simply create a job describing the images (SOP instances) to be

transferred and let the StoreClient do the work.

6.3.3.1. Example – Create and submit a store job from files on disk

Create and submit a store job where instance data comes from DICOM files on disk.

doStoreJob()

{

 // create a StoreJobDescription with one image

 StoreJobDescription sjd = new StoreJobDescription();

 sjd.ServerName = "localhost:2000:StoreSCP";

 sjd.ClientName = "StoreSCU";

 sjd.addInstance(new StoreJobInstanceInfo("somefile.dcm", "", "", null));

 // create a StoreClient

 StoreClient client = new StoreClient();

// submit the job and then wait for completion - this blocks

// use “submitStoreJob” for non blocking behavior.

 StoreJobStatus sjs = client.runStoreJob(sjd);

 // print the status

 System.Console.WriteLine(“status for store job:{0}”, sjs);

}

 Page 115

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

6.3.3.2. Example – Create and submit a store job – Handling Events

Create and submit a store job and handle events when job status changes.

doStoreJob()

{

 // create a StoreJobDescription with one image

 StoreJobDescription sjd = new StoreJobDescription();

 sjd.ServerName = "localhost:2000:StoreSCP";

 sjd.ClientName = "StoreSCU";

 sjd.addInstance(new StoreJobInstanceInfo("somefile.dcm", "", "", null));

 // create a StoreClient

 StoreClient client = new StoreClient();

// submit the job and then wait for completion - this blocks

// use “submitStoreJob” for non blocking behavior.

 StoreJobStatus sjs = client.runStoreJob(sjd);

}

 /*

 * Implementation of StoreClientListener interface.

 */

 public virtual void storeObjectComplete(StoreJobInstanceStatus status)

 {

 LOG.info("Received storeObjectComplete event status = " +

status.dimseStatus());

 }

 /*

 * Implementation of StoreClientListener interface.

 */

 public virtual void storeJobComplete(StoreJobStatus status)

 {

 LOG.info("Received storeJobComplete event " + System.Environment.NewLine +

"status = " + status.status() + System.Environment.NewLine + "statusInfo = " +

status.statusInfo() + System.Environment.NewLine + "status Info Ex = " +

status.statusInfoEx());

 }

6.3.4. Using Query/Retrieve classes

A common application of the DICOM protocol is querying an image archive for images or other

composite objects. The simplest way to do this with the DCF is to use the QRSCU class. QRSCU

provides a high level mechanism for interoperating with QRSCP’s via the C-FIND, C-MOVE and C-

GET DIMSE messages.

Here is a code fragment that creates a QRSCU object and a QRIdentifier (query attributes) then sends

it as a C-FIND Request.

String host = hostname_box_.Text().Trim();

String port = port_box_.Text().Trim();

AssociationInfo ainfo = new AssociationInfo();

ainfo.calledTitle(called_ae_box_.getText().Trim());

ainfo.callingTitle(calling_ae_box_.getText().Trim());

ainfo.calledPresentationAddress(host + ":" + port);

Page 116

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

RequestedPresentationContext ctx = new RequestedPresentationContext((byte)1,

 UID.SOPPATIENTQUERY_FIND, new String[] {ts_uid_});

ainfo.addRequestedPresentationContext(ctx);

CFGGroup session_cfg;

DicomSessionSettings session_settings = new DicomSessionSettings();

String session_cfg_name = "/dicom/QRSCU_default_session_settings.cfg";

try

{

 session_cfg = CFGDB.instance().loadGroup(session_cfg_name, true);

 session_settings = new DicomSessionSettings(session_cfg);

}

catch(CDSException e1)

{

 LOG.error(-1, "Error loading session settings from CFGDB group name = "

 + session_cfg_name, e1);

}

QRSCU scu_ = new QRSCU(ainfo, session_settings);

Configuration config = parent_panel_.getConfiguration();

scu_.maxReturnedResults(config.maxReturnedResults());

scu_.queryTimeoutSeconds = config.queryTimeoutSeconds();

scu_.setRequestedSopClassUid = UID.SOPPATIENTQUERY_FIND;

QRIdentifier query = new QRIdentifier();

// Fields to query on:

query.patientsName = patient_name_box_.Text.Trim();

query.queryretrieveLevel = (String)query_level_combo_box_.getSelectedItem();

query.studyInstanceUid = study_uid_box_.Text.Trim();

// Fields to return:

query.patientId = "";

query.patientsSex = "";

query.modality = "";

query.studyDate = "";

query.numberStudyRelInstances = "";

query.data_set.insert(DCM.E_INSTANCE_AVAILABILITY, "");

addExtraDicomElementsToQuery(query, config.additionalDicomElements());

DicomDataSet expected_fields = new DicomDataSet();

setTagsToDisplay(expected_fields, config.tagsToDisplay());

parent_panel_.setFieldsExpected(expected_fields);

LOG.debug(CINFO.df_SHOW_GENERAL_FLOW, "Query Data set is " + query.data_set());

query_status_.append("Query data set:\n");

query_status_.append(query.data_set().toString());

query_status_.append("\n");

scu_.requestAssociation();

scu_.cFind(query.data_set(), QueryInfoPanel.this, false);

By implementing the QueryListener interface an object will notified when DIMSE Response

messages are received, such as C-FIND-RSP or C-MOVE-RSP or C-GET-RSP.

 Page 117

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

The queryEvent() method is called for each intermediate response.

public void queryEvent(DimseMessage rsp)

{

 //output contents of message to log file

 LOG.info("Received a DIMSE response message " + rsp);

}

The queryComplete() method is called when a final response is received or if an internal error

occurs in the QRSCU class.

public void queryComplete(int status)

{

 try

 {

 //internal error send an abort message.

 if(status == QueryListenerStatus.QUERY_LISTENER_ERROR)

 {

 LOG.error(-1, "Aborting association\n");

 scu_.abortAssociation();

 }

 else

 {

 LOG.info("Releasing association\n");

 scu_.releaseAssociation();

 }

 scu_ = null;

 }

 catch(DCSException e)

 {

 LOG.error(-1, "Error occurred while disconnecting association", e);

 }

}

6.3.4.1. Example – Using Query/Retrieve

See %DCF_ROOT%\devel\cssrc\examples\ex_nqr_scu\ex_nqr_scu.cs

and

%DCF_ROOT%\devel\cssrc\examples\ex_ndcf_nquery_scu\ex_ndcf_nquery_scu.cs.

6.3.5. Using PrintClient

The PrintClient class provides a powerful and easy to use interface to DICOM printers. The user

need not be concerned with any of the complexities of the DICOM print service class protocol, but

simply creates a job describing the films to be printed, and lets the PrintClient do the work.

To send images from a C# program to a DICOM Printer or Print “Service Class Provider” use the

PrintClient class. PrintClient provides a very high level interface to a DICOM Print SCU. The

application developer is removed from the process of negotiating an association, sending DIMSE

messages, managing the complex relationships between objects in the normalized service classes, and

handling printer and print job status notifications. The sheets of images that are to be printed are

defined in an intuitive hierarchical structure. The PrintClient object handles the messy details of

DICOM Print.

Page 118

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

The PrintJobDescription object contains basic attributes of the job such as the server address and

various job level options. Also included in the PrintJobDescription is a single

PrintJobFilmSession object. This corresponds to the DICOM film-session object.

PrintJobFilmSession contains one or more PrintJobFilmBox objects. A PrintJobFilmBox

corresponds to the DICOM film-box object, which represents a sheet or film to be printed.

PrintJobFilmBox contains one or more PrintJobImageBox objects. A PrintJobImageBox

corresponds to a DICOM image-box and represents a single image to be placed somewhere on the film.

When the job has completed, a PrintJobStatus object is returned which summarizes the results of

the print operation.

The PrintClient also supports a listener or notification interface using the PrintClientListener

interface. If the user installs a method to receive events, then notifications will be sent to that object as

DICOM print-job or printer status values change.

//

// initialize the PrintJobDescription

//

PrintJobDescription job = new PrintJobDescription(); // describes the job we want to do

 PrintJobFilmSession film_session = new PrintJobFilmSession();

 PrintJobFilmBox film_box = new PrintJobFilmBox();

 PrintJobImageBox image_box = new PrintJobImageBox();

 job.serverAddress(print_server_address);

 job.clientAddress("DEMO");

 job.requestPrintJobSOPClass(true);

 job.pollPrintJob(true);

 job.printJobPollRateSeconds(2);

 job.jobTimeoutSeconds(30);

 film_session.numberOfCopies = ("1");

 film_session.printPriority = ("HIGH");

 film_session.mediumType = ("BLUE FILM");

 film_session.filmDestination = ("MAGAZINE");

 film_session.filmSessionLabel = ("test");

 film_session.memoryAllocation = ("0");

 film_session.ownerId = ("DCF");

 film_box.imageDisplayFormat = ("STANDARD\\1,1");

 film_box.filmOrientation = ("PORTRAIT");

 film_box.filmSizeId = ("14INX17IN");

 film_box.magnificationType = ("NONE");

 film_box.smoothingType = ("NONE");

 film_box.borderDensity = ("0");

 film_box.emptyImageDensity = ("0");

 film_box.minDensity = (0);

 film_box.maxDensity = (280);

 film_box.trim = ("YES");

 film_box.configurationInformation = ("NONE");

 film_box.illumination = (0);

 film_box.reflectedAmbientLight = (0);

 film_box.requestedResolutionId = ("HIGH");

 image_box.imagePosition = (1);

 image_box.polarity = ("NORMAL");

 image_box.magnificationType = ("NONE");

 image_box.smoothingType = ("NONE");

 image_box.configurationInformation = ("NONE");

 image_box.requestedImageSize = ("0");

 image_box.reqdDecimatecropBehavior = ("DECIMATE");

 image_box.imageInstanceInfo(dii);

 Page 119

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

 film_box.addImageBox(image_box);

 film_session.addFilmBox(film_box);

 job.filmSession(film_session);

 PrintClient print_client = new PrintClient();

 LOG.info("submitting print job:" + job.ToString());

 PrintJobStatus job_status = new PrintJobStatus(job.jobUID());

 print_client.submitPrintJob(job, null, job_status);

 PrintJobStatus job_status = print_client.runPrintJob(job);

This code was taken from the C# ex_nprint_client example. The full source for the program can

be found in $DCF_ROOT\devel\cssrc\examples\ex_nprint_client.

6.3.5.1. Example – Create and submit a print job, handling status events

Create and submit a print job where ImageBox data comes from DICOM disk files and handle events

when Printer or PrintJob status changes. See $DCF_ROOT/devel/cssrc/examples/ex_nprint_scu for a

source code example.

6.3.5.2. Example – Create and submit a print job where ImageBox data comes from DICOM
disk files.

See $DCF_ROOT/devel/cssrc/examples/ex_nprint_client/ex_nprint_client.cs for a

complete program.

 public virtual int runPrint(System.String[] args)

 {

 DicomInstanceInfo dii = new DicomInstanceInfo(args[0]);

 // Print server

 System.String print_server_address = args[1];

 PrintJobDescription job = new PrintJobDescription(); // describes the job we

want to do

 PrintJobFilmSession film_session = new PrintJobFilmSession();

 PrintJobFilmBox film_box = new PrintJobFilmBox();

 PrintJobImageBox image_box = new PrintJobImageBox();

 job.serverAddress(print_server_address);

 job.clientAddress("DEMO");

 job.requestPrintJobSOPClass(true);

 job.pollPrintJob(true);

 job.printJobPollRateSeconds(2);

 job.jobTimeoutSeconds(30);

 film_session.numberOfCopies = ("1");

 film_session.printPriority = ("HIGH");

 film_session.mediumType = ("BLUE FILM");

 film_session.filmDestination = ("MAGAZINE");

 film_session.filmSessionLabel = ("test");

 film_session.memoryAllocation = ("0");

 film_session.ownerId = ("DCF");

 film_box.imageDisplayFormat = ("STANDARD\\1,1");

 film_box.filmOrientation = ("PORTRAIT");

 film_box.filmSizeId = ("14INX17IN");

 film_box.magnificationType = ("NONE");

 film_box.smoothingType = ("NONE");

 film_box.borderDensity = ("0");

 film_box.emptyImageDensity = ("0");

 film_box.minDensity = (0);

Page 120

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

 film_box.maxDensity = (280);

 film_box.trim = ("YES");

 film_box.configurationInformation = ("NONE");

 film_box.illumination = (0);

 film_box.reflectedAmbientLight = (0);

 film_box.requestedResolutionId = ("HIGH");

 image_box.imagePosition = (1);

 image_box.polarity = ("NORMAL");

 image_box.magnificationType = ("NONE");

 image_box.smoothingType = ("NONE");

 image_box.configurationInformation = ("NONE");

 image_box.requestedImageSize = ("0");

 image_box.reqdDecimatecropBehavior = ("DECIMATE");

 image_box.imageInstanceInfo(dii);

 film_box.addImageBox(image_box);

 film_session.addFilmBox(film_box);

 job.filmSession(film_session);

 PrintClient print_client = new PrintClient();

 LOG.info("submitting print job:" + job.ToString());

 PrintJobStatus job_status = new PrintJobStatus(job.jobUID());

 print_client.submitPrintJob(job, null, job_status);

 LOG.info("Done! Print job status: " + job_status);

 if (job_status.status().Equals("SUCCESS"))

 {

 return 0;

 }

 else

 {

 return 1;

 }

 }

6.3.6. Creating and Populating DICOM Sequences

A sequence is just another type of DICOM element (DicomSQElement). Rather than having an array of

Strings, shorts, bytes, or such as its data, DicomSQElement has an array of DicomDataSet’s as its data.

6.3.6.1. Example – Explicitly creating DICOM Sequence elements

To create and populate a DICOM dataset that contains a sequence, you typically do the following:

1. Create a single data set, or an array of data sets,

2. Populate those with elements,

3. Create the sequence element with the dataset(s)., and usually

4. Add the sequence element to the top-level data set.

Here’s an example of how you might accomplish these steps:

 DicomDataSet ds = new DicomDataSet(); //// top level DS

//(1)

 DicomDataSet seq_ds_1 = new DicomDataSet();

//(2)

 seq_ds_1.insert(new DicomUIElement(DCM.E_REFERENCED_SOPCLASS_UID,

"1.2.840.10008.5.1.4.1.1.14"));

 Page 121

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

 seq_ds_1.insert(new DicomUIElement(DCM.E_REFERENCED_SOPINSTANCE_UID,

"1.2.840.114089.1.2.3.4"));

//(3)

 DicomSQElement sq_e = new DicomSQElement(DCM.E_REFERENCED_IMAGE_SEQUENCE,

seq_ds_1);

//(4)

 ds.insert(sq_e);

There are no doubt variations on how a given application will do things – refer to the online docs for

DicomSQElement, DicomDataSet, etc., for additional details and options.

6.3.6.2. Example – Setting DICOM Sequence elements using a config group

If you have a CFGGroup similar to what dcf_pg uses, you can give that config group to a

DicomDataSet constructor, and create a dataset based on the specification in the config group.

For example, if you have a config group stored in a file and load that group as:

CFGGroup g = CFGDB.loadGroup("file:/data_set.cfg");

And the file data_set.cfg contains:

[header_info]

sop class uid

0008,0016 = 1.2.840.10008.5.1.4.31

sop instance uid

0008,0018 = 1.2.3.4.1.100

Accession Number

0008,0050 = 111

Referring Physician

0008,0090 = Dr. Nick

referenced study sequence

sop class uid

0008,1110.0008,1150 = 1.2.3.4.5

sop instance uid

0008,1110.0008,1155 = 1.2.3.4.100

then you could say:

DicomDataSet ds = new DicomDataSet(g);

to initialize the dataset with the values contained in the config group.

A sequence may be entered in a config group file as a tag by appending it to a numeric tag (the

traditional group-element pair) with a period (“.”). You may also indicate an item in the sequence with

“#” and the sequence item ID, followed by the tag indicating the sequence. There may be multiple

sequences and sequence IDs as part of one “tag”. Examples are shown below:

• Simple tag – 0010,0010

• Tag with sequence – 0080,0100.0008,0060

• Tag with sequence ID and sequence – 0080,0100.#0.0008,0060

• Tag with multiple sequences and IDs – 0080,0100.#1.0080,0100.#0.0008,0060

If no item number is specified, the first item (#0) is assumed. You can also specify the last element in a

sequence by “#L” (upper-case is important!) if you don’t know how many items are in a sequence. If

you are creating new elements, you can specify the next item in the sequence via “#N” (again, case is

important) to append to the sequence. For example: 0080,0100.#L.0010,0010.#N.0008,0060

Page 122

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Please notice that:

• The sequence IDs (e.g., #1) and the tag-value pairs for the sequences are all separated by periods

(“.”).

• The tags for the sequences are simple group-element pairs themselves.

6.3.7. Handling alternate character sets with DCF (C#)

The DCF provides limited support for string elements that are encoded in non-default character sets

(i.e., a dataset that contains element 0008,0005 Specific Character Set where that element’s value is

set).

Essentially, when reading any string data from DICOM file or DIMSE message, DCF will explicitly

specify that the raw bytes should be converted to a string using ISO8859-1 decoding. Since

ISO8859-1 is an 8 bit character set, you can get the bytes back from the element and create a new

string that decodes the bytes using a different character set. Likewise, when the DCF retrieves the bytes

from a string element prior to writing a file or DIMSE message, it will specify that ISO8859-1

encoding should be used. For example:

DicomStringElement e = dds.getElement(DCM.E_PATIENTS_NAME);

String s = e.getEncodedStringValue();

byte[] raw_data = System.Text.Encoding.GetEncoding("iso-8859-1").GetBytes(s);

String s2 = System.Text.Encoding.GetEncoding(

 some_other_charset_name).GetString(raw_data);

The method getEncodedStringValue concatenates all of the values using "\" as the delimiter, and

adds any needed pad chars (space or null for UIDs). The resultant value should end up looking the

same as the original raw data.

Notice that the number of values (DicomStringElement.vm() or

DicomStringElement.values().length) when we force ISO8859-1 decoding may be different

from the number of values when using some other character set. That is, a “\” byte value in a string in

an alternate char set may actually be something other than a DICOM string VM delimiter.

Also note that if you create DicomStringElements containing text in an alternate character set, you

may need to re-encode it as ISO8859-1 before passing it to the constructor: For example:

String s = some_string_in_an_altnate_char_set;

byte[] raw_data = System.Text.Encoding.GetEncoding(some_other_char_set).GetBytes(s);

String s2 = System.Text.Encoding.GetEncoding("iso-8859-1").GetString(raw_data)

DicomPNElement e = new DicomPNElement(DCM.E_PATIENTS_NAME, s2);

 // or

DicomElement e = DicomElementFactory.create(DCM.E_PATIENTS_NAME, s2);

Note that Chapter 3, Section C.12.1.1.2 Specific Character Set in the DICOM standard outlines all the

various defined terms for DICOM element 0008,0005 Specific Character Set. Another list is provided

in Chapter 18, Annex D - IANA Mapping (informative).

The Windows character set names, for example, don’t match up to the values DICOM requires for the

0008,0005 tag. The OEM developer will need to write a mapping method of some kind to translate

back and forth between the various naming conventions. For example, if the encoding name for C#.Net

is “ISO-8859-2” (ISO Latin 2), then, by these tables, the DICOM value to put in the 0008,0005

attribute would be “ISO_IR 101”.

 Page 123

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

6.4. Deploying a Simple C# Standalone Application

6.4.1. Deploying a Simple C# Standalone DCF Application

The following procedure shows a simple method of deploying a DCF C# application to a Windows

host. The application (.exe), its required libraries (.dll), and configuration data can be installed into a

single directory on the target system. The application can then be run from the installation directory.

Note that the .Net runtime must be installed on the target system to allow C# applications to run.

We’ll show the process of creating the install directory on your DCF developer box (the host with the

DCF toolkit installed). Once created, that install directory can then be copied to the target using any

number of methods: zip on your DCF developer box, and unzip on the target; or perhaps burn this

directory to a CD-ROM and then run directly from the CD on the target.

This example shows deploying the C#.Net ex_ndcf_filter example and ex_ndcf_dump. The

process would be modified somewhat for your own application.

Perform the following steps:

1. Open a DCF command window:
Select “Start” → “All Programs” → “DICOM Connectivity Framework” →

“DCF Command Prompt”

2. Create the test install directory:

Note: You could paste this text into a batch file and run it to automate this process.

 REM###

 REM### create install dir

 REM###

 mkdir DCF_test_cs_install

 cd DCF_test_cs_install

 REM###

 REM### copy required library files from %DCF_LIB% (../DCF/lib)

 REM###

 copy %DCF_LIB%\DCF_DCFCore.dll

 copy %DCF_LIB%\DCF_ljpeg12.dll

 copy %DCF_LIB%\DCF_ljpeg16.dll

 copy %DCF_LIB%\DCF_ljpeg8.dll

 copy %DCF_LIB%\LaurelBridge.APC_a.dll

 copy %DCF_LIB%\LaurelBridge.CDS_a.dll

 copy %DCF_LIB%\LaurelBridge.DCF.dll

 copy %DCF_LIB%\LaurelBridge.DCS.dll

 copy %DCF_LIB%\LaurelBridge.DDS.dll

 copy %DCF_LIB%\LaurelBridge.DDS_a.dll

 copy %DCF_LIB%\LaurelBridge.LOG_a.dll

 copy %DCF_LIB%\LaurelBridge.NDCDS.dll

...copy %DCF_LIB%\DCF_TSCW.dll

 copy %DCF_LIB%\DCF_TSCWIJG.dll

 copy %DCF_LIB%\DCF_TSCWJasper.dll

 REM ### The Aware wrapper dll is needed only if using Aware’s JPEG libraries.

 REM ### Note the actual Aware JPEG library (awj2k.dll) must be purchased separately

 copy %DCF_LIB%\DCF_TSCWAware.dll

 REM### copy required library files from %DCF_BIN% (../DCF/bin).

 REM### These may exist in other places on the system, but copies

 REM### are put here during DCF toolkit install for convenience,

 REM### (Note omniORB dlls may not be required depending on the

 REM### application and your DCF version)

 REM ### If you are building from a DCF VisualStudio8.x .NET toolkit:

 copy %DCF_BIN%\msvcp80.dll

 copy %DCF_BIN%\msvcr80.dll

Page 124

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

 REM ### Note that the filenames may differ somewhat from what is specified here.

 copy %DCF_BIN%\omniORB414_rt.dll

 copy %DCF_BIN%\omnithread34_rt.dll

 REM###

 REM### Copy the application that you want - for example,

 REM### include both the C#.Net ex_ndcf_filter example, and the ex_ndcf_dump

 REM### example.

 REM###

 copy %DCF_BIN%\ex_ndcf_dump.exe

 copy %DCF_BIN%\ex_ndcf_filter.exe

 REM###

 REM### Copy the sample filter configuration for ex_ndcf_filter

 REM### if desired.

 REM###

 copy %DCF_ROOT%\devel\cssrc\examples\ex_ndcf_filter\example_filter.cfg

 REM###

 REM### Create a minimal configuration directory.

 REM###

 mkdir cfg

 mkdir cfg\apps

 mkdir cfg\apps\defaults

 mkdir cfg\procs

 REM###

 REM### Copy the license configuration file, and the application configs

 REM### for the installed programs.

 REM###

 copy %DCF_CFG%\systeminfo cfg\systeminfo

 copy %DCF_CFG%\apps\defaults\ex_ndcf_filter cfg\apps\defaults

 copy %DCF_CFG%\apps\defaults\ex_ndcf_dump cfg\apps\defaults

3. Create the media by which you will deliver the install directory to the target machine.

4. On the target machine do the following:

a) Install .Net framework redistributable (i.e., .NET dlls, etc.)

Note: this is necessary to run any .Net (C#) application.

b) Unpack, copy or otherwise make the DCF app install directory available. For example, copy

or unzip to C:\temp\DCF

c) From a command window, go to the install directory. For example, use C:\temp\DCF.
cd C:\temp\DCF

d) Set the environment vars and run your apps (you could put this text in a run_app.bat file).

 set DCF_CFG=C:\temp\DCF\cfg

 set DCF_LIB=C:\temp\DCF

 set DCF_TMP=C:\temp\DCF

 ### display input image (choose a dicom file here)

 ex_ndcf_dump \temp\test.dcm

 ###

 ### filter that image - the example_filter.cfg

 ### uses "C:\temp\test.dcm" and "C:\temp\filtered_image.dcm"

 ### as input and output respectively.

 ex_ndcf_filter -f file:/example_filter.cfg

 ### examine output

 ex_ndcf_dump \temp\filtered_image.dcm

 Page 125

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

6.4.2. Deploying a Simple C# Standalone OEM Application

The following procedure shows a simple method of deploying an OEM C# application that uses some

DCF classes to a Windows host. The application (.exe), its required libraries (.dll), and configuration

data can be installed into a single directory on the target system. The application can then be run from

the installation directory.

Note that the .Net runtime must be installed on the target system to allow C# applications to run.

We’ll show the process of creating the install directory on your DCF developer box (the host with the

DCF toolkit installed). Once created, that install directory can then be copied to the target using any

number of methods: zip on your DCF developer box, and unzip on the target; or perhaps burn this

directory to a CD-ROM and then run directly from the CD on the target.

For this example a new app in cssrc/examples/ex_ndcf_simple_win_app was created. This is a non-

DCF app that was created using the Visual Studio designer and the process from this guide (see Section

6.2.4 – Manually Creating C# Projects from MS Visual Studio 2003/2005 IDE). This example is

basically a GUI version of dcf_dump. This directory includes a cinfo.cfg only so that it can be auto-

built, but it has “gen_build_file = no” and “gen_cinfo_code_and_data = no”. The user

could delete the cinfo.cfg file, and still use the example in Visual Studio.

The deployment is nearly the same as for the example above for the DCF C# app, except that there is no

app config file, so instead, you need to include the cfg\components\cs_lib files so DCF libraries

can load default settings if needed.

To create this application, perform the following steps:

1. Open a DCF command window:
Select “Start” → “All Programs” → “DICOM Connectivity Framework” →

“DCF Command Prompt”

2. Create the test install directory:

Note: You could paste this text into a batch file and run it to automate this process.

REM ###

REM ### create install dir

REM ###

mkdir DCF_test_cs_install

cd DCF_test_cs_install

REM ###

REM ### copy required library files from %DCF_LIB% (../DCF/lib)

REM ###

copy %DCF_LIB%\DCF_DCFCore.dll

copy %DCF_LIB%\DCF_ljpeg12.dll

copy %DCF_LIB%\DCF_ljpeg16.dll

copy %DCF_LIB%\DCF_ljpeg8.dll

copy %DCF_LIB%\LaurelBridge.APC_a.dll

copy %DCF_LIB%\LaurelBridge.CDS_a.dll

copy %DCF_LIB%\LaurelBridge.DCF.dll

copy %DCF_LIB%\LaurelBridge.DCS.dll

copy %DCF_LIB%\LaurelBridge.DDS.dll

copy %DCF_LIB%\LaurelBridge.DDS_a.dll

copy %DCF_LIB%\LaurelBridge.LOG_a.dll

copy %DCF_LIB%\LaurelBridge.NDCDS.dll

copy %DCF_LIB%\DCF_TSCW.dll

copy %DCF_LIB%\DCF_TSCWIJG.dll

copy %DCF_LIB%\DCF_TSCWJasper.dll

REM ### The Aware dll is needed only if you are using Aware’s JPEG libraries.

copy %DCF_LIB%\DCF_TSCWAware.dll

REM ### copy required library files from %DCF_BIN% (../DCF/bin).

Page 126

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

REM ### These may exist in other places on the system, but copies

REM ### are put here during DCF toolkit install for convenience,

REM ### (Note omniORB dlls may not be required depending on the

REM ### application and your DCF version)

REM ### If you are building from a DCF VisualStudio8.x .NET toolkit:

copy %DCF_BIN%\msvcp80.dll

copy %DCF_BIN%\msvcr80.dll

REM ### Note that the filenames may differ somewhat from what is specified here.

copy %DCF_BIN%\omniORB414_rt.dll

copy %DCF_BIN%\omnithread34_rt.dll

REM ###

REM ### Copy the application that you want.

REM ###

REM ### In your C# project directory, the executable might

REM ### be in .\bin\Debug or .\bin\Release

REM ### Here, we assume the exe is in \temp.

copy C:\temp\ex_ndcf_simple_win_app.exe .

REM ###

REM ### Create a minimal configuration directory.

REM ###

mkdir cfg

mkdir cfg\apps

mkdir cfg\apps\defaults

mkdir cfg\procs

mkdir cfg\components

mkdir cfg\components\cs_lib

REM ###

REM ### Copy the license configuration file, and the

REM ### C# library component configuration data. Since

REM ### there is no application configuration, library

REM ### code may look to this data for default configuration.

REM ###

copy %DCF_CFG%\systeminfo cfg\systeminfo

copy %DCF_CFG%\components\cs_lib* cfg\components\cs_lib

3. Create the media by which you will deliver the install directory to the target machine.

4. On the target machine do the following:

a) Install .Net framework redistributable (i.e., .NET dlls, etc.)

Note: this is necessary to run any .Net (C#) application.

b) Unpack, copy or otherwise make the DCF app install directory available. For example, copy

or unzip to C:\temp\DCF

c) From a command window, go to the install directory. For example, use C:\temp\DCF.
cd C:\temp\DCF

d) Set the environment vars and run your apps (you could put this text in a run_app.bat file).

set DCF_CFG=C:\temp\DCF\cfg

set DCF_LIB=C:\temp\DCF

set DCF_TMP=C:\temp\DCF

Run your application

ex_ndcf_simple_win_app

 Page 127

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Note: If you are separating the installed files into “bin” and “lib” directories – for example, your

executable is in the “install/bin” directory and any libraries it needs are in the “install/lib” directory –

you need to take some additional steps when deploying your application.

For one thing, you will need to make sure the bin and lib directories are in the PATH environment

variable. You will also probably need to add each of the LaurelBridge C# DLLs to the Global

Assembly Cache (GAC) with the gacutil command, e.g., gacutil /i LaurelBridge.DCF.dll.

6.5. Common Services Programming Examples

6.5.1. C# “hello world” Example Application Using the DCF

To demonstrate some of the capabilities of the DCF, you can create and run the most basic of code

examples: the “Hello World” program. The DCF “Hello World” program demo will make use of the

DCF development tools, as well as the common services APIs and implementations.

Change to the devel/cssrc/examples/ex_ndcf_HelloWorld directory under the DCF install

directory, then build and execute the example application:

cd %DCF_USER_ROOT%/devel/cssrc/examples/ex_ndcf_HelloWorld

perl –S dcfmake.pl

ex_ndcf_HelloWorld

From your web browser, select “View Log Files” from the DCF Remote Service Interface. Select the

log file for the ex_ndcf_HelloWorld application, and view the output.

To create the ex_ndcf_HelloWorld application, the following steps were followed:

1. Create a directory for the application

2. Create a component information file for the application

3. Create the source code for the application

4. Build the application

5. Update the configuration data base

1. Create a directory for the new application component. In the DCF, every application or library is a

component and has its own source directory.
mkdir %DCF_ROOT%\devel\cssrc\examples\ex_ndcf_HelloWorld

2. Create a component information file in that directory. This file must be called “cinfo.cfg”. For

this example it contains the following:
#==

static information common to all instances of the ex_ndcf_HelloWorld component

#==

[component_info]

name = ex_ndcf_HelloWorld

namespace_prefix = LaurelBridge

guid = 6BB35642-8400-44FA-850E-E7EAA1C03B21

type = cs_app

category = examples

docfile = none

description = C# example app logs.

[build_info]

platform = Windows_NT_5_x86_VisualStudio10.x

platform = Windows_NT_5_x64_VisualStudio10.x

platform = Windows_NT_5_x86_VisualStudio12.x

platform = Windows_NT_5_x64_VisualStudio12.x

Page 128

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

gen_build_file = yes

gen_cinfo_code_and_data = yes

[debug_controls]

debug_flag = df_EXAMPLE, 0x10000, do something special if this debug flag is set

[required_components]

component = cs_lib/DCF

component = cs_lib/LOG_a

component = cs_lib/APC_a

#==

per-instance information for the ex_ndcf_HelloWorld component

#==

[ex_ndcf_HelloWorld]

debug_flags = 0x00000

[ex_ndcf_HelloWorld/english]

hello_world = hello world

[ex_ndcf_HelloWorld/spanish]

hello_world = hola mundo

[ex_ndcf_HelloWorld/french]

hello_world = bonjour le monde

[ex_ndcf_HelloWorld/german]

hello_world = hallo welt

The file is in the DCF configuration file format, which provides for attributes, groups, and nested

groups.

Note: The easiest way to create the cinfo.cfg file for your application or library is to copy one from

a similar component, then edit as needed. You will need to generate a new GUID using a program

like “uuidgen /c”

The first group [component_info] describes basic attributes of the component. The component

type is “cs_app” which indicates a C# application. The guid (Globally Unique Identifier) is used by

Visual Studio. Each new component you create must have a new guid. You can use the program

“uuidgen” with the argument “/c” to generate a new guid in the correct format.

You can use dcfmake.pl to create applications in any directory, as long as you create a

cinfo.cfg file in that directory. You can also use DCF C# classes for your application as you

would any other C# class library.

The [required_components] group specifies three components needed by this application. The

group [debug_controls] is where the developer can add support for conditional logging or other

behavior specific to this component. Debug controls that are defined here can be accessed via the

web interface.

The [ex_ndcf_HelloWorld] group contains the instance configuration for the component. This

data is used directly in the example code.

3. Create the application source code

For this example, the file is called “ex_ndcf_HelloWorld.cs”.

using System;

using LaurelBridge.DCF;

 Page 129

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

namespace LaurelBridge

{

 namespace ex_ndcf_HelloWorld

 {

 /// <summary> The class ex_ndcf_HelloWorld demonstrates the most basic of programs

 /// using the DCF common services interfaces for Application Control (APC),

 /// Configuration Data Services (CDS), and Logging (LOG)

 ///

 /// To make it interesting, messages from different languages

 /// are retrieved from the application configuration.

 /// </summary>

 public class ex_ndcf_HelloWorld

 {

 private static System.String usage_ =

 "use ex_ndcf_HelloWorld [adapter options] [ex_ndcf_HelloWorld options]\n"

 + "adapter options are passed to LOG_a, CDS_a, and APC_a setup methods\n"

 + "[ex_ndcf_HelloWorld options]\n" + "-help display this message\n"

 + "-lang [english|spanish|french|german] specifies which message to

display\n";

 [STAThread]

 public static void Main(System.String[] args)

 {

 int status;

 try

 {

 System.String language = "english";

 for (int i = 0; i < args.Length; i++)

 {

 if (args[i].Equals("-help"))

 {

 System.Console.Error.WriteLine(usage_);

 System.Environment.Exit(0);

 }

 else if (args[i].Equals("-lang"))

 {

 if ((i + 1) >= args.Length)

 {

 System.Console.Error.WriteLine(usage_);

 System.Environment.Exit(1);

 }

 language = args[i + 1];

 }

 }

 // Setup the DCF common services adapters

 // we'll use the fully configured logger,

 // but only the File-system mode CFGDB - i.e.,

 // DCDS_Server is not required to be running

 Framework.ConsoleModeLogger = false;

 Framework.FSysModeCFGDB = true;

 Framework.initDefaultServices(args, CINFO.Instance);

 // Get the ex_ndcf_HelloWorld component configuration from within the

 // ex_ndcf_HelloWorld application instance configuration

 //CFGGroup component_cfg = CINFO.Config;

 CFGGroup component_cfg = AppControl.Instance.getProcCfgGroup(

"cs_app/ex_ndcf_HelloWorld");

 // get the configuration group containing various message strings

 CFGGroup messages = component_cfg.getGroup(language);

Page 130

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

 // write the appropriate hello world message to the logger.

 LOG.info(messages.getAttributeValue("hello_world"));

 // write a debug message

 LOG.debug(CINFO.df_EXAMPLE, "this only prints if the df_EXAMPLE debug

flag is set");

 // print something to stderr

 System.Console.Error.WriteLine("test completed successfully - see log

files for output");

 status = 0;

 }

 catch (Exception e)

 {

 LOG.error(-1, "Exception caught:\n", e);

 status = -1;

 }

 Framework.shutdown(status);

 }

 }

 }

}

4. Build the application.

To build the application, simply type the command

perl –S dcfmake.pl

Invoking dcfmake.pl will perform the following steps for this example:

a) Read the cinfo.cfg file in the current working directory.

b) Read the component configuration for each “required component” in the cinfo.cfg.

Component configurations come from the

%DCF_USER_ROOT\devel\cfggen\components directory. That data was created when

dcfmake.pl built those components.

c) Recursively read component configurations for other required components.

d) Generate the component configuration for this component. This data is written to the file
%DCF_USER_ROOT%\devel\cfggen\components\cs_app\ex_ndcf_HelloWorld

e) Generate the application configuration for this component. This data is written to the file
%DCF_USER_ROOT%\devel\cfggen\apps\defaults\ex_ndcf_HelloWorld

f) Generate the CINFO.cs source file in the current directory. The CINFO class contains the

debug flag mask constants as well as code to initialize and update the debug flags value

from the CDS database. CINFO also provides convenience mechanisms for getting the

configuration group for the component within a particular application.

g) Generate the LOG.cs source file in the current directory. The LOG class (which is internal to

the component’s assembly) is simply a wrapper for the DCF LOG interface. It simplifies

checking debug flag settings in CINFO, and provides message header fields that remain

constant for the component.

h) Generate the .csproj.

i) Invoke “devenv .csproj <args>”. Any arguments given to dcfmake.pl are forwarded

to devenv. After the make completes, the generated .csproj file is removed. You can

have dcfmake.pl leave the generated file by using the “-keep” option.

 Page 131

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

5. Update the configuration data service repository.

This developer can determine when to deploy any newly created or edited configuration data. This

can be useful if you are testing with non-default configurations and do not want the fact that you

have rebuilt something to affect your working configuration files. To update the data execute the

command:

perl –S update_cds.pl

This will copy all files from the temporary areas %DCF_USER_ROOT%\devel\cfggen and

%DCF_USER_ROOT%\devel\cfgsrc to the working area: %DCF_USER_ROOT%\cfg. As the files

are copied various macros are expanded, e.g., the files in the working configuration can have the

correct port numbers, path names, etc.

The application is now ready to run!

6.5.2. Using the LOG interface – Logging from C# programs

Each C# component assembly has an internal class named “LOG”. This class is generated by

dcfmake.pl in the file LOG.cs. Component-specific debug flags are generated in the assembly-

internal file CINFO.cs.

First, the LOG adapter must be initialized. Normally, all of the common services are installed at once,

during application initialization. This can be done with the lines:

LaurelBridge.LOG_a.LOGClient_a.setup(args);

LaurelBridge.CDS_a.CFGDB_a.setup(args);

LaurelBridge.APC_a.AppControl_a.setup(args, CINFO.instance);

Messages are logged using the following methods:

LOG.info(“this message will always print”);

LOG.error(-1, “this is an error”);

LOG.error(-1, “the stack trace contained in the exception (e) will print\n”, e);

LOG.debug(CINFO.df_SHOW_GENERAL_FLOW, “this is a conditional debug message”);

Generally it is best to keep possibly expensive expressions like

("Here is a data set: " + ds.toString())

in conditionals, since in C# (and Java), the args to LOG.debug are evaluated before calling the method,

which then may decide to not log anything.

A better approach is to do something like what is illustrated in the following example:

if (CINFO.debug(CINFO.df_SHOW_GENERAL_FLOW)

{

 LOG.debug("Namespace.StoreSCP.DicomDataService_a.storeObject: dimse-message = " +

c_store_rq);

}

By wrapping the debug message in a conditional at least you’re not doing extra work when you are in

non-debug mode.

6.5.3. Avoiding or Embracing use of the Common Services

The ability to run without any configuration files and without initializing any of the common services is

sometimes a desirable option. There are a variety of approaches and possibilities available:

1. Using no common services and no config files:

Page 132

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Under this scenario any services that are used by you or DCF are auto-initialized to a reasonable

default configuration.

 // just start using DCF classes: e.g.

 using namespace Laurelbridge.DCS;

 DicomFileInput dfi = new DicomFileInput("file.dcm");

 DicomDataSet dds = dfi.readDataSet();

In this mode, default configuration data if needed for DCS classes comes from compiled-in data

in LaurelBridge.DCS.CINFO.

Note: If you do not initialize the logger component to write to a file; then by default you will get

the Console Mode logger facility. This may produce unexpected messages or behavior

depending on whether or not your application has a console. Even if your application does not

write LOG messages, DCF library code may write some info messages to the logger, which will

attempt to write to the console. In addition, if you ever need to turn on DICOM debug logging (or

any logging, for that matter), this could create a problem for a GUI or Service application that

does not have a console.

Note: A word of caution when no configuration files are used. Because configuration data is

not getting read from a file, but from burned in default data contained in the DCF assemblies,

this means that if you want to change a default value then your code must have a facility to

allow users to change those values programmatically. Example of things you might want to

change include: Debug flags, timeout values, AE titles, and the like.

2. Using no common services, no application config file, but including component configurations:

Under this scenario component configurations are created and stored in the directory:

"%DCF_CFG%\components\cs_lib*".

In this mode, default configuration data, if needed for DCS classes, comes from the file:

%DCF_CFG%\components\cs_lib\DCS. Other DCF libraries would find their config data in

the same fashion.

See Note in example 1 above.

3. Use all the Common Services:

In this scenario your system is considered fully configured, i.e.,

a) You have an application configuration, e.g.,
%DCF_CFG%\apps\defaults\some_app_name

You’re setting up common services.

You’re a server that is started by the system manager and will communicate with it as it initializes (See

configurations in %DCF_CFG%\systems.)
// init common services

LaurelBridge.LOG_a.LOGClient_a.setup(args);

LaurelBridge.CDS_a.CFGDB_a.setup(args);

LaurelBridge.APC_a.AppControl_a.setup(args, CINFO.Instance);

// let sysmgr know you’re done init (If you’re an SCP using AssociationManager,

// it will do this when run() is called

AppControl.Instance.applicationReady();

Note: In this mode (3), we're spelling out what is happening and not using

"Framework.initDefaultServices()". While this command still works, we're

discouraging its use. For the two lines that it saves, there are potential problems or confusing

 Page 133

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

issues. Since the class "Framework" is in namespace "DCF", which builds before CDS_a,

LOG_a, APC_a, it can't literally call those three "setup" methods as above. Instead, it uses

reflection to load the forward referenced assemblies and call them. Likewise, the

methods/properties on Framework to set various options are just pass-throughs to the real

classes. It seems cleaner to just let the user understand more of what's actually happening as

illustrated above.

4. Something in between choosing no services or all services.

The problem is there are MANY variations possible, so here’s one example:

a) We have an app-config, so we'll setup AppControl.

We want to ignore the logger config data in the app-config, and just set a single file name.

We want to use the file system (fsys) mode cfg db.

We are not interacting with the system manager.

// set up logger with a single file

LaurelBridge.LOG_a.LOGClient_a.LogFileName = "test.log";

LaurelBridge.LOG_a.LOGClient_a.setup(args);

// setup CFGDB adapter in fsys mode.

// Note: this is what happens if you do nothing, and someone calls CFGDB.Instance

LaurelBridge.CDS_a.CFGDB_a.FSysMode = true;

LaurelBridge.CDS_a.CFGDB_a.setup(args);

// setup AppControl and tell it we will not be receiving shutdown messages, which

// implies we don't talk to system manager

LaurelBridge.APC_a.AppControl_a.setHandleExternalShutdownRq(false);

LaurelBridge.APC_a.AppControl_a.setup(args, CINFO.Instance);

See Note in example 1 above.

6.5.4. Using the CDS interface

See language specific class documentation for CDS.CFGGroup, CDS.CFGAttribute, and

CDS.CFGDB.

6.5.5. Using the APC interface

See language specific on-line documentation for details on using APC.AppControl.

6.6. Advanced DICOM Programming Examples

6.6.1. Using StorageCommitmentSCU

The StoreCommitSCU and StoreCommitSCUAgent classes provide the user with an interface to the

Storage Commitment Push Model SOP class as a Service Class User. The StoreCommitSCU class

allows the user to send a list of DICOM SOP instances to a Storage Commitment SCP for which storage

commitment is requested. The StoreCommitSCU class provides the interface for creating an

association, creating a transaction UID, and sending the appropriate N-ACTION DIMSE message. The

DicomDataService singleton’s commitRequestSent method will be called in order to notify the OEM’s

database that the commit has been requested.

After sending the requests via N-Action, the StoreCommitSCU can be configured to hold the outbound

association open. Otherwise, the StoreCommitSCUAgent class can be used to wait for inbound

Page 134

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

associations. In either case, the SCP will send N-Event-Report DIMSE messages back to the SCU

(StoreCommitSCU). The DicomDataService singleton’s commitCompleted method will be called so

that the OEM can be updated with the commit completion status from the SCP.

Store related classes are in the LaurelBridge.DSS (DICOM Store Services) namespace. These classes

are contained in the LaurelBridge.DSS.dll assembly.

6.6.1.1. Example – Send store commit requests and receive StoreCommitClientListener
notifications

Send store commit requests and receive N-Event-Report notifications as objects are committed to long

term storage.

See the ex_nstorecommit_scu.exe example for a complete program which can optionally start a

StoreCommitSCUAgent in a new thread to receive incoming N-Event-Reports on a new association.

LaurelBridge.DSS.StoreCommitRequest request = new LaurelBridge.DSS.StoreCommitRequest();

//

// Put together the server_address.

//

String server_address = called_host_ + ":" + called_port_;

LOG.info("Called presentation address = " + server_address);

AssociationInfo ainfo = new AssociationInfo();

RequestedPresentationContext sc_ctx = new RequestedPresentationContext(1,

UID.SOPCLASSSTORECOMMITPUSHMODEL, new String[] { UID.TRANSFERLITTLEENDIANEXPLICIT,

UID.TRANSFERLITTLEENDIAN });

ainfo.calledPresentationAddress(server_address);

ainfo.calledTitle(called_ae_title_);

ainfo.callingTitle(calling_ae_title_);

ainfo.addRequestedPresentationContext(sc_ctx);

scu_ = new StoreCommitSCU(ainfo);

try

{

 // populate the referenced sop sequence from the command line args

 int count = 0;

 ReferencedSopSequence[] ref_sop_sequence = new

ReferencedSopSequence[file_list_.size()];

 request.transactionUid(DCMUID.makeUID());

 while (count < file_list_.size())

 {

 DicomFileInput dfi = new DicomFileInput((String)file_list_.elementAt(count));

 dfi.open();

 DicomDataSet dds = dfi.readDataSetNoPixels();

 dfi.close();

 // create a sequence item with the uids

 ReferencedSopSequence ref_sop_sequence_item = new ReferencedSopSequence();

 ref_sop_sequence_item.referencedSopclassUid(

dds.getElementStringValue(DCM.E_SOPCLASS_UID));

 ref_sop_sequence_item.referencedSopinstanceUid(

dds.getElementStringValue(DCM.E_SOPINSTANCE_UID));

 // add the sequence item to the vector of items

 ref_sop_sequence[count] = ref_sop_sequence_item;

 count++;

 }

 // add the vector of sequence items to the request, it will be converted to

 // a sequence element containing one data set item for each object in the

 // vector

 Page 135

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

 request.referencedSopSequence(ref_sop_sequence);

 scu_.requestAssociation();

 scu_.nAction(request, 10, 10);

 scu_.waitForNEvent(1);

 scu_.releaseAssociation();

 exit_status_ = 0;

6.6.2. Using MWLClient

The MWLClient class provides a powerful and easy-to-use interface for accessing DICOM Modality

Worklist providers. The user builds a query using either the basic DicomDataSet/DicomElement

classes or the ModalityWorklistItem and related wrapper classes. This query is then sent by the

MWLClient object. As responses arrive, they are either stored in a collection or delivered back to the

client as they arrive.

For an example of writing your own MWLClient class, see Section 4.5.6 and

LaurelBridge.DCS.QRSCU and LaurelBridge.DCS.DicomSCU API documentation.

6.6.2.1. Example – Send Worklist Query and wait for all responses before continuing

See %DCF_ROOT%\devel\cssrc\examples\ex_ndcf_mwl_scu for an example.

Note with this example the program processes incoming DIMSE Messages.

6.6.2.2. Example – Send Worklist Query and handle responses as they arrive

See %DCF_ROOT%\devel\cssrc\examples\ex_ndcf_query_scu (Query/Retrieve) for an example of

installing an event handler to be notified (with the query result as the payload) when a

DIMSE Message has been processed.

6.6.3. Using MPPSClient

The MPPSClient is used to communicate with Modality Performed Procedure Step Service Class

providers or servers.

MPPSClient creates and updates instances of Modality Performed Procedure Step objects. It sends

N-Create and N-Set DIMSE messages to an MPPS SCP or server. The user instructs the

MPPSClient to connect to the SCP, and uses the n_set() and n_create() methods to send the

appropriate DIMSE messages.

6.6.3.1. Example – MPPSClient Console Application

See %DCF_ROOT%\devel\cssrc\examples\ex_nmpps_scu\ex_nmpps_scu.cs for a complete

console application example.

6.6.3.2. Example – Send DIMSE N-CREATE or N-SET messages to a MPPS Server

The method below will send the appropriate DIMSE N-CREATE or N-SET message to a MPPS

Server.

public virtual void runJob()

{

 //

 // Decide on whether to do an n-create or n-set

 //

 if (f_opt_create_ && f_opt_set_)

 {

Page 136

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

 throw new DCSException("Cannot n-set and n-create at the same time");

 }

 //

 // Put together the server_address.

 //

 System.String server_address = host_ + ":" + port_;

 LOG.info("Called presentation address = " + server_address);

 AssociationInfo ainfo = new AssociationInfo();

 RequestedPresentationContext mpps_ctx = new RequestedPresentationContext(1,

UID.SOPPERFORMEDPROCEDURESTEP, new System.String[]{ts_uid_});

 ainfo.calledPresentationAddress(server_address);

 ainfo.calledTitle(called_ae_title_);

 ainfo.callingTitle(calling_ae_title_);

 ainfo.addRequestedPresentationContext(mpps_ctx);

 scu_ = new MPPSSCU(ainfo);

 scu_.requestAssociation();

 CFGGroup mpps_cfg = null;

 try

 {

 mpps_cfg = CFGDB.Instance.loadGroup(cfg_file_, true);

 }

 catch (CDSException cds_e)

 {

 LOG.error(- 1, "Error loading mpps cfg file " + usage(), cds_e);

 System.Environment.Exit(- 1);

 }

 LOG.info("MPPS CFGGroup = " + mpps_cfg);

 DicomDataSet ds = new DicomDataSet(mpps_cfg);

 ModalityPerformedProcedureStep procedure = new ModalityPerformedProcedureStep(ds);

 if (f_opt_create_)

 {

 scu_.nCreate(procedure, 10);

 }

 else if (f_opt_set_)

 {

 scu_.nSet(procedure, 10);

 }

 scu_.releaseAssociation();

 exit_status_ = 0;

}

6.6.4. C# Store, Q/R, and MWL Server-Related Examples

A common application of the DICOM protocol is in creating an image archive. An OEM may have

special requirements for how images and patient information are stored in a database. The DCF

provides APIs that are structured such that the OEM can easily customize the handling of image or

other DICOM datasets without the need to deal with the mechanics of negotiating associations, handling

sockets, PDUs or DIMSE messages.

The DicomDataService interface provides the mechanism for customizing the handling of DICOM

datasets. Generic DCF protocol handling objects such as StoreSCP, QRSCP (Query Retrieve), MWLSCP

(Modality Worklist) invoke DicomDataService methods to access the local storage facilities. The

reference implementation adapter for the DicomDataService interface stores objects in the file

 Page 137

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

system and provides minimal searching capabilities to support testing. Other implementations or

adapters can be written that behave differently.

The example %DCF_ROOT%\devel\examples\ex_nstore_scp shows a simple storage server that

sends incoming DICOM objects to the file system using the default DicomDataService_a (DICOM

Data Service adapter) in %DCF_ROOT%\devel\cssrc\DDS_a. By installing a particular

DicomDataService_a all incoming DICOM images are passed to the storeObject() method

defined in that class.

The source file ex_nstore_scp.cs contains the function main() which installs the

DicomDataService adapter and enters the loop which waits for incoming DICOM associations.

Note: To support MWL and Query Retrieve, the findObjects(), findObjectsForTransfer(),

and loadObject() methods would have to be implemented. See example implementations, which are

listed below.

The directory $DCF_ROOT/devel/cssrc/ex_nqr_scp shows a simple Query/Retrieve server that

searches a “canned” set of DICOM objects in response to C-FIND requests and C-MOVE and C-GET

requests and performs the appropriate matching. It either returns the list of found objects for a C-FIND

or performs C-STORE operations if a C-MOVE or a C-GET was requested.

See $DCF_ROOT/devel/cssrc/examples/ex_nqr_scp/ex_nqr_scp.cs. This program is

almost identical to ex_nstore_scp.cs with the exception that it uses QRServer class instead of

StoreServer class. The directory $DCF_ROOT/devel/cssrc/ex_nqr_scp shows a simple

Query/Retrieve server that searches a “canned” set of DICOM objects in response to C-FIND requests

and C-MOVE and C-GET requests and performs the appropriate matching. The list of “canned”

objects is created from thefiles found in $DCF_ROOT/test/qr directory. It either returns the list of

found objects for a C-FIND or performs C-STORE operations if a C-MOVE or a C-GET was

requested.

The directory %DCF_ROOT%\devel\cssrc\ex_nmwl_scp shows a simple Modality Worklist server

that searches a “canned” set of DICOM objects in response to C-FIND requests performs the appropriate

matching. It returns the list of found objects for a C-FIND. The list of “canned” objects is created from

thefiles found in $DCF_ROOT/test/worklist directory.

See %DCF_ROOT%\devel\cssrc\examples\ex_nmwl_scp\ex_nmwl_scp.cs. This program is

almost identical to ex_nstore_scp.cs with the exception that it uses MWLServer class instead of

StoreServer class.

6.6.4.1. Using the MWL Server as an MPPS Server

Both the C# and Java worklist server examples (ex_nmwl_scp and ex_jmwl_scp) are also MPPS

servers by default.

MPPS N-CREATE messages and N-SET messages are stored to the currently installed

DicomDataService adapter. If you are using the default file system mode DicomDataService

adapter, you can tell DicomDataService to store the both the command and data data-sets from N-

CREATE and N-SET messages. This is useful if you want to be able to tell whether the stored object

came from an N-CREATE or an N-SET message as this information is sent in the Command Data set

of a DIMSE message. This functionality can be turned on by setting the appropriate CFG attribute to

“YES”, e.g.,

/apps/defaults/ex_nmwl_server/java_lib/DDS_a/save_command_data YES

or

/apps/defaults/ex_nmwl_server/cs_lib/DDS_a/save_command_data YES

Page 138

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

6.6.4.2. Example – Implementing a custom storeObject() method

The following example illustrates how to create your own DicomDataService Adapter and

implement the storeObject() method.

Note: your DicomDataService adapter class can have any name or be part of any assembly. The

only requirements on your implementation are that:

• It must implement the abstract class LaurelBridge.DDS.DicomDataService; and

• You must “install” that implementation before the first time it will be used: you should add a

static method called "setup" to your implementation to “install” it.

The following illustrates what part of your DicomDataService adapter would look like:

using LaurelBridge.DDS;

namespace OEM.StoreTest

{

using LaurelBridge.DDS;

public class OEMDataServiceAdapter : LaurelBridge.DicomDataService

{

 //protected constructor

 //You can only create one of things be calling the public static setup method.

 protected OEMDataServiceAdapter(String args[])

 {

 //put initializiation code

 }

 //no default constructors allowed

 protected OEMDataServiceAdapter

 {

 LOG.error(-1, "illegal use of default constructor");

 }

 //Here’s where you add your code to store images to your backend

 public DicomPersistentObjectDescriptor storeObject(

 AssociationAcceptor association_acceptor,

 DimseMessage c_store_rq)

 throws DDSException

 {

 //Your implementation goes here

 }

 //Do something like the following for the other abstract methods

 //in DicomDataService base class.

 public abstract DicomDataSet loadObject(

 DicomPersistentObjectDescriptor dpod,

 boolean f_read_pixel_data)

 throws DDSException

 {

 throw new DDSException(“loadObject unimplemented”)

 }

 //Add a public setup method to install your implementation

 public static void setup(String args[])

 throws DDSException

 {

 OEMDataServiceAdapter instance = new OEMDataServiceAdapter(args);

 //base class method that will set a new installed implementation

 setInstance(instance);

 Page 139

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

 }

} //end of class OEMDataSetAdapter

In your application’s main() method, before you begin accepting incoming associations, call your

setup() method, for example:

public static void Main(string[] args)

{

...

 OEM.StoreTest.OEMDataServiceAdapter.setup(args);

 //begin accepting associations

...

}

You could, in fact, simply replace the following line in the example program ex_nstore_scp.cs

DicomDataService_a.setup(args);

with this line:

OEM.StoreTest.OEMDataServiceAdapter.setup(args);

and then once this change is made ex_nstore_scp.cs will use your new DicomDataService

adapter’s storeObject() method whenever an incoming DICOM Image is stored.

The other methods in the DicomDataService interface support operations like finding previously

stored objects (findObjects() method) or loading previously stored objects (loadObject()

method); this functionality is used to support the Query/Retrieve or Worklist SOP classes.

6.6.4.3. Example – How DicomDataService (DDS) gets called:

DicomDataService is a singleton that is created at init time when setup() is called on a

DicomDataService subclass (the adapter).

In your store SCP app you do something like:

AssociationManager amgr = new AssociationManager();

StoreServer store_server = new StoreServer(amgr);

amgr.run();

When AssociationMgr.run() detects a new connection, it does the following:

Create a new thread for the association, so association manager can go back to waiting for incoming

assocs.

In the new per-association thread the following are done:

• Create one AssociationAcceptor.

• Call the configPolicyMgr that was registered with amgr to get session settings for the

association.

• Call beginAssociation() on each AssociationListener that is registered with amgr.

One of the listeners is store_server which does the following:

Page 140

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

create StoreSCP which will be devoted to this association. StoreSCP registers with the

AssociationAcceptor as a PresentationContextAcceptor for any supported SOP

classes.

• AssociationAcceptor performs association negotiation during which it may associate

StoreSCP with one or more of the accepted presentation-contexts.

• AssociationAcceptor now enters a message loop, reading and dispatching messages.

In addition to implementing PresentationContextAcceptor which is used during

connection setup, StoreSCP also implements DimseMessageHandler which is used as

messages are received by the main loop in AssociationAcceptor.

• When AssociationAcceptor receives a C-Store-Request dimse message, it dispatches it to the

handler for the indicated presentation-context (StoreSCP handles all accepted store contexts).

• StoreSCP calls DicomDataService.Instance.storeObject() which lands in your

storeObject() code.

6.6.4.4. Example – Adding OEM specific data to DicomSessionSettings:

When implementing a custom StoreSCP it may become desirable to add custom processing for certain

clients, for example, you may customize your actions based on the calling AE-Title of the client. When

adding OEM specific data to DicomSessionSettings the main issue to be aware of is to assure that

you don't use a group or element name that DCS.DicomSessionSettings is already using.

To add a setting you could do something like the following:

MyStoreSCPApp

{

 DicomSessionSettings getSessionSettings(AssociationAcceptor acceptor)

 {

 // create default settings

 DicomSessionSettings ss = new DicomSessionSettings();

 // create custom config info

 CFGGroup my_data = new CFGGroup("OEM.DicomDataService_a");

 my_data.setAttributeValue("output_dir", "/somedir/" +

 acceptor.AssociationInfo.CalledTitle);

 // add to CFGGroup contained by DicomSessionSettings

 ss.Cfg.addGroup(my_data);

 return ss;

 }

}

DicomDataService_a

{

 storeObject(AssociationAcceptor acceptor, ...)

 {

 string dir =

acceptor.SessionSettings.Cfg.getAttributeValue("OEM.DicomDataService_a/output_dir");

 ...

 }

}

6.6.4.5. Example – Receiving or Logging Retired SOP classes:

Suppose you receive an image that has a SOP class UID of 1.2.840.10008.5.1.4.1.1.6, which is the

retired Ultra Sound Image Storage UID. You can make your StoreSCP accept it by adding this UID to

the list of StoreSCP supported_sop_classes in your apps configuration file (e.g., in cs_lib\DSS, under

 Page 141

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

DSS/StoreSCP/default_session_cfg/supported_sop_classes) or by adding this UID to session settings

(see 6.6.4.4). You will need to restart your DCF system after making the change, since you need to

restart the DCF if you are using the CFGDB.

You can find the Retired SOP classes by looking at the UID’s appendix of Chapter 6 of the DICOM

standard.

With the ex_nstore_scp.exe example, one way to check for this kind of condition is to override the

endAssociation() method of AssociationListener (see the ex_nstore_scp example). You can get the

AssociationInfo object from the AssociationAcceptor and check the list of rejected presentation

contexts. With that information you may choose to take some action or simply log the fact that a

presentation context was rejected.

You can add the following code to the ex_nstore_scp example to log a rejection:

...

/// <summary> Optional implementation of AssociationListener interface.

/// Indicates that an association has ended.

/// </summary>

/// <param name="assoc"> the object handling the association.

/// </param>

public virtual void endAssociation(AssociationAcceptor assoc)

{

 LOG.info("Association has ended.");

 System.Collections.ArrayList ctx_list =

 assoc.AssociationInfo.rejectedPresentationContextList();

 //If there were any rejected presentation contexts do something.

 for(int i=0; i<ctx_list.Count; i++)

 {

 RejectedPresentationContext ctx =

 (RejectedPresentationContext) ctx_list[i];

 LOG.info("RejectedPresentationContext = " + ctx.ToString());

 }

}

...

6.6.4.6. Writing a Custom DICOM SCP

You can extend %DCF_ROOT%\devel\cssrc\examples\ex_n_oem_scp\ex_n_oem_scp.cs.

6.7. DICOM compression transfer syntax support for C#

DCF C# applications can handle DICOM datasets in any transfer syntax for non-pixel data operations

provided that compression pass through mode is turned on (except for DICOM Deflated Little Endian

Syntax and JPIP Transfer syntaxes).

DCF C# applications can compress and decompress data sets in these encapsulated transfer syntaxes:

• 1.2.840.10008.1.2.4.5 RLE Lossless

• 1.2.840.10008.1.2.4.50 JPEG 8 bit lossy

• 1.2.840.10008.1.2.4.51 JPEG 12 bit lossy

• 1.2.840.10008.1.2.4.57 JPEG lossless

• 1.2.840.10008.1.2.4.70 JPEG lossless (predictor selection=1)

• 1.2.840.10008.1.2.4.90 JPEG-2000 lossless

• 1.2.840.10008.1.2.4.91 JPEG-2000 lossy

Page 142

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

RLE Lossless transfer syntax is supported for compression of single frame data sets. RLE Lossless

transfer syntax is supported for the decompression of single frame and multi-frame data sets.

Look at the settings under the DCS section of an application configuration file or in a DCS component

configuration file to see options that can be configured for compression.

Note: If you are using the Aware, Inc., JPEG library, that this does not support .57.

 Page 143

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

7. Using DCF System Manager to control processes

The application dcf_sysmgr provides a convenient mechanism to manage startup and shutdown of

a collection of related server processes. The system manager can start C++, Java or C# or other

applications either as foreground (utility) processes or background (server) processes. Using either

CORBA or COM IPC, an application can communicate with the system manager to request system

startup or shutdown, or to query for the status of the system. Likewise the system manager will

communicate with child processes to determine their status or to request a shutdown. The system

manager may be started as needed, as part of launching a set of applications, or automatically at

initialization time (e.g., in an /etc/rc file on Unix, or by the Service Control Manager on Windows).

Note that it is not required that any DCF application use the system manager. Use of the system

manager is controlled by the attribute APC_a/handle_external_shutdown_rq in the cpp_lib

(C++), java_lib (Java), or cs_lib (C#) configuration sub-group, depending on the

implementation language. If this attribute is true, then the dcf_sysmgr app is expected to send

shutdown messages, and the application will attempt to send “registerApplication” and

“applicationReady” messages to the system manager.

7.1. Installing and Starting the System Manager

7.1.1. Installing and starting as a service on Windows

Register the system manager as a Windows service using:

dcf_sysmgr /Service

The service will be named:

<product_name>.<DCF version>.dcfsysmgr

e.g.,

DCF.3.1.3a.dcfsysmgr

Make sure that the PATH contains the location of dcf_sysmgr.exe and any dll’s that it will need.

You can use the “Services” administrator tool to adjust how the service is started, or to stop and start

the service. The “sc” command can also be used to start the system manager. For example:

sc start DCF.3.1.3a.dcfsysmgr

See Section 7.3.1 below for information about attributes that control the service’s behavior.

7.1.2. Installing and starting as a normal server process on Windows

Register the system manager as a LocalServer32 using:

dcf_sysmgr /RegServer

Note that the DCF toolkit installer will optionally perform this step on a development box.

Page 144

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Start the dcf_sysmgr process either by running it from the command line, in a batch file, or by using

the dcfstart.pl or apc_client.exe programs, which will start dcf_sysmgr if it is not already

running.

7.1.3. Installing and starting on Unix

Start the dcf_sysmgr process like any other Unix server process or daemon. For example:

dcf_sysmgr &

See Section 7.3.1 below for information about attributes that control the service’s behavior.

7.2. System Manager Related Interfaces

The system manager implements and uses various CORBA and COM interfaces. CORBA interfaces

are defined by the DAPC (Distributed Application Control) idl library, while the COM interfaces are

defined as part of the dcf_sysmgr C++ application. These interfaces are:

Interface Description

DAPC::SystemManager CORBA interface to start/stop/get-status of a system

DAPC::ApplicationControl CORBA interface by which dcf_sysmgr requests child server

(C++, Java) applications to shutdown

DAPC::SystemStatusListener CORBA interface used to deliver status events to system

management tools

DAPC::ProcessStatusListener CORBA interface used to deliver status events to system

management tools

ICOMAppControl COM interface by which dcf_sysmgr requests child server (C#)

applications to shutdown

ICOMSystemManager COM interface to start/stop/get-status of a system

_ICOMSystemManagerEvents COM interface used to deliver process and system status events

to management tools

The application apc_client is used to communicate with the system manager using various interfaces

from the DAPC component. The scripts dcfstart.pl, dcfstop.pl and dcfsysstatus.pl are

simple wrappers that invoke apc_client.

A GUI based example is available for C#.Net. This application can be found in

DCF_ROOT/devel/cssrc/examples/NDCFSystemMonitor. System manager must be running prior to

starting NDCFSystemMonitor. A system configuration can be selected, and the system manager can

be requested to start or stop that system. The status of the system and each process is updated

dynamically. Note that if “exit_after_system_stopped” is set in the dcf_sysmgr app configuration,

then the system manager process will exit after the first “Stop-System” request is completed.

 Page 145

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

As of DCF version 3.1.4b, both COM and CORBA clients locate the system manager using a

stringified object reference which is stored in the directory given by the DCF_TMP environment

variable. For CORBA clients, this is a standard IIOP stringified object reference. For COM, a string

representation of an ObjRefMoniker object is used. On Windows systems, a single instance of the

COMSystemManager class is created and registered in the Running Object Table. All COM clients

interact with this object.

7.3. System Manager Configuration

The system manager uses two sources of configuration data. First, as it is itself a DCF application, it

has an application configuration. When a request to start a system is given, a system configuration is

provided which describes the programs that will be started as well as the startup and shutdown order,

etc.

7.3.1. System Manager Application Configuration

By default, the file $DCF_CFG/apps/defaults/dcf_sysmgr provides the application configuration.

Below are some of the attributes from that file:

#==

per-instance information for the dcf_sysmgr component

#==

[cpp_ipc_app/dcf_sysmgr]

debug_flags = 0x00000

If true, dcf_sysmgr will exit after system shutdown is complete.

Will also exit if the first startsystem request fails.

This means a call to "stopsystem" will behave the same as "shutdown"

If this is false, then "stopsystem" will shutdown child processes,

but dcf_sysmgr will remain running.

exit_after_system_stopped = YES

Name of system configuration to auto-start

e.g. file:C:/Program Files/DCF_3.1.3a/cfg/systems/store_server_win32.cfg

or /systems/ndcds_server_win32.cfg

In the latter case, CFGDB will look under the directory indicated by the

DCF_CFG environment variable.

#auto_start_system_cfg =

There are five main configuration attributes that are used to control the system manager’s behavior

when starting and stopping servers or applications.

• auto_start_system_cfg – This tells the system manager the name of the configuration

of processes to start automatically. You can manually indicate a system configuration to start

via a command-line argument to dcfrestart.pl or to apc_client; setting this attribute tells the

system manager to start this system without having to specify the configuration name on the

command line. (In fact, if this value is set, it will always be used when the system manager is

run, even if you do specify a different configuration name on the command line.)

• exit_after_system_stopped – This tells the system manager that it should not itself

exit after all of the servers / applications in the system configuration have stopped. This is

Page 146

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

useful when you are running the system manager as a Windows service – you may desire for

the various DICOM servers to stop but you don’t want the system manager to stop.

• exit_after_system_error – This is similar to exit_after_system_stopped,

except that it tells the system manager whether or not to exit if an error occurs in one of the

servers / applications that causes that server / application to exit with an error.

• restart_after_system_error – This tells the system manager if it should restart the

auto_start_system_cfg if one of its processes failed unexpectedly. This can be useful

if your system encounters an error and exits – the system manager can then restart the

configuration so that there is only a brief disruption in handling requests and data flow.

• max_auto_restarts – This is how many times the system should auto-restart after a

system failure occurs. The default value is 3; if your system fails more than 3 times, there may

be a serious error that should be investigated and resolved before resuming normal operations.

You can set this to “-1” to have it restart indefinitely.

Note that some of these values are applicable only if auto_start_system_cfg is set.

When you install the dcf_sysmgr as a service, you will probably want to set the above attributes to the

following values. This will configure the system manager so that it will continue running your system

configuration even if an error occurs.

• auto_start_system_cfg = <name of the system configuration>

• exit_after_system_stopped = NO

• exit_after_system_error = NO

• restart_after_system_error = YES

7.3.2. System Manager System Configuration

The format of a system configuration file is shown below. All of the example system configurations

which can be run from the remote service interface are started using the system manager. You can see

the configuration files for these systems in $DCF_CFG/systems.

System information group: general information about this configuration

[system_info]

name = < name of system >

description = < description of this system >

If the platform attribute is present, then the

current platform (given by $DCF_PLATFORM)

must match one of the attribute values. This is

currently only used by the DCF service web pages

to filter which system configurations are shown.

see DCF_ROOT/platforms.cfg for a complete list

of defined platforms.

platform = <first supported platform>

platform = <next supported platform>

…

Any environment variables in the "environment" group

are inherited by processes started by dcf_sysmgr.

example attribute in environment group:

 Page 147

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

DCF_ROOT = C:\LBS\DCF

[environment]

<env_var_name_1> = <value 1>

…

List of processes that are run as part of the system startup sequence.

Each value for the "process" attribute is a group name for

a process configuration group below.

The processes are started in the same order as the attribute values.

[startup]

process = <name of first startup process>

process = <name of next startup process>

…

List of processes to run (for type=utility), or to stop (for

server procs that from the [startup] group) as part of the

system shutdown sequence.

If one of these entries is a utility process, it is run in the

foreground. If it is a server process, it must correspond to

a server process from the startup group, in which case it

is issued a shutdown or terminate request as appropriate.

Processes are run/stopped in the same order as the attribute

values.

[shutdown]

process = <name of first shutdown process>

process = <name of next shutdown process>

…

#===

Per Process configuration settings:

#===

Each Process group referenced by either the "startup" or

"shutdown" groups has the following format:

The group name is the string in the startup or shutdown group

e.g. "dcf_store_scp.001"

#===

[<process_name>]

Process type:

utility : runs in the foreground. System Manager will execute

this process and wait for its termination.

dcf_server : A DCF server, i.e., one that is expected to send

register_application and application_ready messages, and can

accept shutdown messages.

Server processes are run in the background.

The next process will not be started until this process

completes its start up sequence - i.e., sending

register-app and then app-ready.

server2 : A non-DCF server, i.e., some other app that is not

DCF system manager aware.

server2 processes are run in the background. The next

process is started immediately after starting one of these.

server : synonym for dcf_server. ("server" is used for compatibility

with old versions of dcf_runsystem.pl.)

Required attribute

Page 148

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

type = utility | server | server2 | dcf_server

For a utility process, the exit code that is expected.

If you do not care about the exit code, use the special

value "IGNORE_RETURN".

Otherwise, if the exit code does not match the expected, the

system will shutdown. If this occurs during shutdown,

an error is logged, and shutdown continues.

Default value = 0

expected_exit_code = <decimal number> | IGNORE_RETURN

For a utility process, the number of seconds after starting

to wait for termination.

If this time is exceeded during startup, the system will shutdown.

If this time is exceeded during shutdown, the utility is

terminated, and shutdown continues.

This timeout is used when utility processes are run either

as part of the startup or shutdown sequence.

Default value = 30

wait_timeout_seconds = <seconds>

For a server or dcf_server process, the number of seconds

to wait after starting the process for the register_application

message.

If this time is exceeded, the system will shutdown.

Default value = 15

register_app_timeout_seconds = <seconds>

For a server or dcf_server process, the number of seconds

to wait after receiving the register_application

message for the application_ready message.

If this time is exceeded, the system will shutdown.

Default value = 15

app_ready_timeout_seconds = <seconds>

Number of seconds after starting a server2 process or after

receiving application_ready from a server or dcf_server process

before the next process is started.

Default value = 0

post_start_delay_seconds = <seconds>

Number of seconds to wait for process termination after a

shutdown request is issued to a dcf_server process.

If this time is exceeded, the process is terminated and

shutdown continues.

Default value = 30

 Page 149

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

shutdown_timeout_seconds = <seconds>

The program and command line arguments to run for this process.

Required attribute

command = <command line>

Name of file to which stdout and stderr for this process will

be redirected.

Default value is "$DCF_LOG/<process_name>.out.log"

A future release may provide a special value that redirects

the process' stdout/stderr to the dcf_sysmgr's stdout/stderr.

We may also allow stdout and stderr to go to different files.

Note this has nothing to do with output for the DCF logger or

other logging interfaces.

stdout_name = <filename>

What to do if the process terminates while the system is starting

or running:

shutdown_system : the system will be shutdown. This is a required process.

ignore : do nothing. This process is optional.

restart : (Not currently implemented - in a future release, the

process will be restarted)

Default value = shutdown_system

terminate_action = shutdown_system | ignore | restart

7.4. System startup for a DCF server application

Following is the initialization sequence for a typical DCF server application. (Note that in this example,

use of the system manager is enabled, as is use of the server mode Configuration Data Service.)

1. dcf_sysmgr starts application “server_xyz”

2. server_xyz performs preliminary initialization, e.g., set up IPC capabilities.

3. server_xyz initializes the Configuration Data Service adapter (CDS_a.CFGDB_a) in either file-

system or server mode.

4. server_xyz initializes the Application Control adapter (APC_a.AppControl_a). The application

configuration is read and used to initialize the process configuration. Optionally, the process

configuration is saved to the CDS CFGDB. Optionally, server_xyz registers as an observer of

the process configuration. At the end of the AppControl adapter setup, server_xyz sends

“registerApplication” message to dcf_sysmgr. This indicates that server_xyz is not fully

initialized, but is at least able to receive a shutdownApplication message from dcf_sysmgr if the

startup is aborted.

5. server_xyz completes initialization – this may include setting up a DICOM server socket,

performing other application specific startup tasks, etc.

Page 150

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

6. server_xyz sends “applicationReady” message to dcf_sysmgr. At this point, dcf_sysmgr will

proceed to start the next process defined by the system configuration. If this is the last process,

then the system state is changed from “STARTING” to “RUNNING”.

7.5. System shutdown for a DCF server application

System shutdown is very simple. dcf_sysmgr stops processes in the order defined by the “[shutdown

]” configuration group in the system configuration. Note that if a utility process is contained in the

shutdown group, that process is run in the foreground; if a server-process that was also contained in

the startup group is referenced, then that server is issued a shutdown request. For DCF servers (example

server_xyz) the following takes place:

1. dcf_sysmgr sends shutdownApplication message to server_xyz. This message is delivered to the

AppControl adapter.

2. AppControl notifies all shutdown listeners that phase-1 shutdown has started. All but critical

services (logging, etc.) are stopped. For a DICOM application, for instance, the

AssociationManager object will stop accepting associations at this point.

3. The process configuration, if saved in CDS, is deleted (optionally). Any observers that are

registered with CDS are unregistered.

4. AppControl notifies all shutdown listeners that phase-2 shutdown has started. Any components

that have not yet cleaned up do so now.

5. The AppControl event loop is stopped. If the application has called

AppControl.Instance.runEventLoop(), then that method returns, and the application is free to

exit.

 Page 151

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

8. The DCF Development Environment

8.1. Using the dcfmake.pl utility

The utility script, dcfmake.pl, is a program that builds DCF components or DCF based OEM

components. You can use dcfmake.pl to build your applications, libraries, etc., or you can use your

favorite make program, IDE, etc., provided you reference the DCF include, library, classes,

directories appropriately.

The dcfmake.pl script functions in two primary modes – index file mode or component build

mode. If the file dcfmake.cfg exists in the current directory, then index file mode is assumed.

Otherwise component build mode is assumed.

In index file mode, dcfmake.pl opens the file dcfmake.cfg and reads a list of subdirectories (one

per line). It sequentially descends into each of these directories and invokes dcfmake.pl recursively.

This provides control over the build order of multiple components.

In Component build mode, dcfmake.pl performs the following steps

1. Read the component information file (cinfo.cfg)

2. Execute optional user defined “pre_gen” command or script

3. Generate Logging/Debugging/Configuration related instrumentation code as applicable for the

component type

4. Generate Configuration meta data files as applicable for the component type

5. Generate a UNIX makefile or Windows project file

6. Execute optional user defined “post_gen” command or script

7. Execute the “make” command or the visual studio command line build application with the

generated makefile or project file.

See the ex_hello_world example for a step-by-step example of running dcfmake.pl to create an

application that uses the DCF development environment.

(See Appendix G: Using Perl with the DCF for information on simplifying the invocation of the Perl

interpreter on Windows.)

8.1.1. Command line options for dcfmake.pl

The dcfmake.pl script supports the following command line options:

dcfmake.pl [options] <-- make options>

 -verbose : print useful information while building

 -cfgfile <name> : overrides the default "cinfo.cfg"

 -indexfile <name> : overrides the default "dcfmake.cfg"

 -build-config <debug|release> : overrides the default "debug"

 -action <build|rebuild|clean> : overrides the default "build"

 -force : regenerate metadata and instrumentation even if config file is not newer

 -keep : do not delete temporary files

 -no-execute: do not execute any commands or create any files

 -generate-code-only : create metadata and instrumentation, but do not run make/devenv

 -ctype-to-build <cpp_app|cpp_lib|java_lib|....> : only build components of this type

(Note ctype-to-build is matched as a regex, so for example “lib” matches cpp_lib, cpp_lib_pkg,

java_lib,...)

Page 152

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Options may be abbreviated as long as there is no ambiguity – i.e., “–v” is OK and selects “–

verbose”, but “–c” is not OK, it must be either “–cf” or “–ct” to distinguish which option to select.

Any options following the optional '--' are passed directly to the make or Visual Studio’s command

line interface.

8.1.2. The cinfo.cfg file

The file cinfo.cfg provides information about your component (library, application, etc.). It

normally exists in the same directory as your component. Each component must be contained in its

own directory or folder.

The format of that file is defined by the following annotated example.

#==

static information common to all instances of the ex_hello_world component

#==

[component_info]

name for this component (required)

name = ex_hello_world

type for this component (required)

type = cpp_app

category for this component

category = examples

file containing doc comments for auto-gen’ed docs

docfile = ex_hello_world.cpp

description of this component (required)

description = Example first application program

version = 0.1

#==

The build_info group is optional and contains settings that control dcfmake.pl

#==

[build_info]

1 if application configuration file should be created (default = 1)

only valid for application type components

gen_app_cfg = 1

1 if generated Component Information instrumentation and config data

should be generated (default=1)

gen_cinfo_code_and_data = 1

1 if makefile or VS project file should be created. Set to 0 for

custom built (or built with IDE or other tool) build files.

gen_build_file = 1

name of generated application configuration file

(default is $DCF_USER_ROOT/devel/cfggen/apps/defaults/<name>)

only valid for application type components

app_cfg_name =

set if idl module name is different from component name

only valid for idl_lib components

module_name =

additional compiler options added to generated makefiles

cpp_options =

additional linker options added to generated makefiles

 Page 153

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

link_options =

additional include directories (for VS8+)

win_xml_inc_dirs =

additional libraries to link with (for VS8+)

win_xml_libs =

additional debug libraries to link with (for VS8+)

win_xml_debug_libs =

additional preprocessor defines (for VS8+)

Win_xml_preproc_defines =

extension for generated C++ source files (default = .cpp)

cinfo_cc_file_ext =

command to execute prior to generating files (default = none)

pre_gen =

command to execute after generating files (before invoking make) (default = none)

post_gen =

command to execute after invoking make (default = none)

post_make =

create executables in this directory(default = $DCF_BINDIR)

only valid for application type components

bin_dir =

create public CInfo header files in this directory

(default = ${DCF_USER_ROOT}/include/$cinfo->{component_name})

inc_dir

create libraries in this directory(default = $DCF_LIBDIR)

only valid for library type components

lib_dir);

= .

This group defines debug settings.

[debug_controls]

debug_flag = <short_name>, <bit_value>, <description>

debug_flag = df_TEST1, 0x10000, place holder for test 1 debug setting

debug_flag = df_TEST2, 0x20000, Do something cool

list of other DCF components required. This will affect makefile or dsp files,

as well as the generated application configuration file if any.

[required_components]

component = cpp_lib_pkg/DCFCore

component = cpp_lib/DCFUtil

component = cpp_lib/LOG_a

component = cpp_lib/APC_a

component = cpp_lib/CDS_a

component = idl_lib/DCDS

#==

Page 154

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

per-instance information for the ex_hello_world component

#==

[ex_hello_world]

debug_flags = 0x00000

#==

The following sections allow the customization of the generated default

application configuration.

After the application configuration is created,

selected library component configuration settings can be overridden.

Note that this affects the settings for that library only within the context

of this application.

#==

[lib_cfg_overrides]

this example changes the “use_log_server” attribute in the [LOG_a] group

in the generated application configuration file.

[lib_cfg_overrides/LOG_a]

use_log_server = FALSE

 Page 155

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

8.1.3. Generated files for various component types

Prior to executing the actual “make” command, dcfmake.pl creates various files.

For each of the component physical types, the files generated are listed in the following table. Note that

this list does not include the actual binary output of the various compiler or linker programs – i.e.,

.EXE, .SO, .DLL, .CLASS files, etc…

Type Generated files

cpp_lib <name>CInfo.cpp

<name>CInfoL.h

include/<name>/<name>CInfoP.h

include/<name>/<name>CInfo.h

devel/cfggen/components/cpp_lib/<name>

makefile.dcf (unix platforms)

<name>.dsp or <name.vcproj>(Windows platforms)

<name>.dswf or <name>.sln (Windows platforms)

cpp_lib_src <name>CInfo.cpp

<name>CInfoL.h

include/<name>/<name>CInfoP.h

include/<name>/<name>CInfo.h

devel/cfggen/components/cpp_lib_src/<name>

cpp_lib_pkg devel/cfggen/components/cpp_lib_pkg/<name>

makefile.dcf (unix platforms)

<name>.dsp or <name.vcproj>(Windows platforms)

<name>.dswf or <name>.sln (Windows platforms)

java_lib CINFO.java

LOG.java

devel/cfggen/components/java_lib/<name>

makefile.dcf

<name>.dsp or <name.vcproj>(Windows platforms)

<name>.dswf or <name>.sln (Windows platforms)

cpp_app <name>CInfo.cpp

<name>CInfoL.h

name>CInfo.h

devel/cfggen/components/cpp_app/<name>

devel/cfggen/apps/defaults/<name>

makefile.dcf (unix platforms)

<name>.dsp or <name.vcproj>(Windows platforms)

<name>.dswf or <name>.sln (Windows platforms)

Page 156

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Type Generated files

cs_lib CINFO.cs

LOG.cs

devel/cfggen/components/cs_lib/<name>

<name>.csproj

cs_app (For Console applications)

CINFO.cs

LOG.cs

devel/cfggen/components/cs_app/<name>

devel/cfggen/apps/defaults/<name>

<name>.csproj

cs_win_app (For GUI applications)

CINFO.cs

LOG.cs

devel/cfggen/components/cs_win_app/<name>

devel/cfggen/apps/defaults/<name>

<name>.csproj

cpp_jni_lib devel/cfggen/components/cpp_jni_lib/<name>

makefile.dcf (unix platforms)

<name>.dsp (Windows platforms)

<name>.dswf (Windows platforms)

java_app CINFO.java

LOG.java

devel/cfggen/components/java_app/<name>

devel/cfggen/apps/defaults/<name>

makefile.dcf

<name>.dsp (Windows platforms)

<name>.dswf (Windows platforms)

idl_lib devel/cfggen/components/idl_lib/<name>

makefile.dcf

<name>.dsp (Windows platforms)

<name>.dswf (Windows platforms)

An explanation of each of the generated files is contained in the following table:

Generated file name Description

<name>CInfo.cpp Component Information C++ file. Defines the

<name>CInfo class. Holds component global

information at runtime. (Generated by substituting

text in devel/lib/templates/CInfo.cpp)

 Page 157

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Generated file name Description

<name>CInfoL.h Component Information “Local” header file.

Defines Logging and other macros used only

within the component. (Generated by substituting

text in devel/lib/templates/CInfoL.h)

include/<name>/<name>CInfoP.h Component Information “Public” header file.

Defines namespace and performs Windows DLL

Import magic. Included by other source files which

use this component. (Generated by substituting text

in devel/lib/templates/CInfoP.h)

include/<name>/<name>CInfo.h Component Information header file. Included by

CInfoL.h and external source files which need to

adjust debug settings for this component.

(Generated by substituting text in

devel/lib/templates/CInfo.h)

CINFO.java Component Information Java file.

LOG.java For Java, defines Logging macros used only within

the component.

CINFO.cs Component Information C# file.

LOG.cs For C#, defines Logging macros used only with the

component.

devel/cfggen/components/<type>/<name> Configuration data common to all instances of this

component. This includes build information, as

well as the “[debug_controls]” and “[<name>]”

groups from the original cinfo.cfg

devel/cfggen/apps/defaults/<name> Default application configuration file. This

contains a generated “[application_info]” group,

plus a copy of the

“devel/cfggen/components/<type>/<name>/<name

>” group from each required library component.

makefile.dcf Standard Unix or Visual Studio makefile

(Generated by substituting text in

devel/lib/<type>_gnumakefile or

<type>_nmakefile

<name>.dsp Visual Studio 6 project file – Each component

maps to a VC++ project. (Generated by

substituting text in devel/lib/<type>_dsp

<name>.dswf Visual Studio 6 workspace “fragment” file. Files

of this type are concatenated by the “makedsw.pl”

utility to create a Visual studio workspace (.dsw)

file.

<name>.vcproj Visual Studio 2003/2005 C++ project file – Each

component maps to a VS project. (Generated by

substituting text in devel/lib/<type>_vcproj

Page 158

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Generated file name Description

<name>.csproj Visual Studio 2003/2005 C# project file – Each

component maps to a VS project. (Generated by

substituting text in devel/lib/<type>_vsproj

<name>.sln Visual Studio 2003/2005 solution file.

8.2. Example: Creating a DCF library component

The following diagram shows the steps that are taken when a DCF library component is built. The

example shows a C++ library component. Similar steps are taken for idl_lib, java_lib, and cs_lib

component types.

Building a DCF cpp_lib component

(name = xyz)

dcfmake

devel/csrc/xyz/*.cpp

devel/csrc/xyz/*.h

c++ source files and private headers

include/xyz/*.h

public headers

devel/csrc/xyz/cinfo.cfg

component information file

lib/libxyz.so

shared library produced by linker

devel/csrc/xyz/xyzCInfo.cpp

devel/csrc/xyz/xyzCInfo.h

log/debug wrappers and component

information object

devel/cfggen/components/cpp_lib/xyz

static data for this component

include/xyz/xyzCInfo.h

public component information header

Figure 14: Creating a DCF Library Component

 Page 159

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

8.3. Example: Creating a DCF application component

The following diagram shows the steps taken to build a C++ application component. The procedures for

creating a Java or C# application are similar.

Building a DCF cpp_app component

name = abc

dcfmake

devel/csrc/abc/*.cpp

devel/csrc/abc/*.h

c++ source files and private headers

lib/libxyz.so

include/xyz/*.h

typical compile/link dependancies,

repeat for each library component

required by abc

devel/csrc/abc/cinfo.cfg

component information file

bin/abc

executable produced by linker

devel/csrc/abc/abcCInfo.cpp

devel/csrc/abc/abcCInfo.h

log/debug wrappers and

component information object

devel/cfggen/components/

cpp_app/abc

static data for this component

devel/cfggen/apps/defaults/abc

application config file for abc

devel/cfggen/components/cpp_lib/xyz

instance configuration data for xyz -

repeat for each required library

component

Figure 15: Creating a DCF Application Component

Page 160

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

8.4. Using iodgen to create DICOM dataset wrappers to represent an IOD

The DCF comes with an advanced code generation tool – iodgen.pl. A DICOM IOD or Information

Object Definition is a data set specification for an image or some other radiology related entity. For

instance, each image from the various supported modality types is defined as an IOD. The IOD

specification in the standard defines a collection of modules that make up the object. The module

specification in the standard defines a collection of elements that make up the module.

iodgen will read configuration data for an IOD and generate classes that provide access methods to

each element in that class. Iodgen can generate C++, Java and C#.NET output.

iodgen uses the DICOM data dictionary. For each element, the VR (value representation), VM (value

multiplicity), name, and description are looked up. This information is used to generate code to get or

set that element in the dataset contained by the IOD object.

To create the code for the DicomImage C++ class, we ran

perl –S iodgen.pl DicomImage.iod

The configuration file DicomImage.iod contains the following:

DicomImage iod represents a generic image SOP instance

All of the attributes from the General Image and Image Pixel

modules are there, as well as selected additional attributes

name = DicomImage

uidname = "1.2.3"

specref = chapter 3

module = GeneralImage

module = ImagePixel

module = ModalityLUT

module = VOILUT

The name field “DicomImage” indicates the name of the class. For each module, the file of the same

name with an extension “.mod” in the current directory is read. As a module example, the file

ModalityLUT.mod contains the following:

Modality LUT

element = 0028 3000

>element = 0028 3002

>element = 0028 3003

>element = 0028 3004

>element = 0028 3006

element = 0028 1052

element = 0028 1053

A module file contains a list of element tags. Similar to the notation in the actual DICOM standard, if an

element is a “sequence” or container type, then the elements below it are indented with a “>” character.

For a sequence within a sequence, the elements are preceded by “>>”, and so on.

For each top-level element, for example 0028, 1052 (rescale intercept) in the Modality LUT module,

the following member functions are added to the DicomImage class definitions.

/**

* rescaleIntercept()

* get the Rescale Intercept element value

 Page 161

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

* from the DicomImage's data set.

* dicom tag = (0028, 1052)

* Throws DCSException if that element has not been set (not in dataset).

* Throws DCSException if element is not multi-valued.

* @return the data for this element

*/

const string &rescaleIntercept(void) const

 throw(DCSException);

/**

* rescaleIntercept()

* set a new value for the Rescale Intercept element.

* dicom tag = (0028, 1052)

* A copy of the input string will be made by the object. (using string's copy

* on write logic).

* @param data - string value

* @return nothing

*/

void rescaleIntercept(const string &data);

For elements that are sequences, a new class is generated to represent the sequence. Member functions

to get or set that sequence are also added to the containing class. For example, for the element 0028,

3000 (modality LUT sequence) in the Modality LUT module, the following member functions are

added to the DicomImage class definitions:

/**

* getModalityLutSequenceCount()

* return the number of items (data sets) in the

* ModalityLutSequence sequence

* dicom tag = (0028, 3000)

* @return the number of items in the given sequence or -1 if the

* element is not present in the data set

*/

INT32 getModalityLutSequenceCount() const;

/**

* modalityLutSequence()

* get the requested item (data set) from the

* Modality LUT Sequence sequence

* in the DicomImage's data set.

* dicom tag = (0028, 3000)

* The default item index is 0.

* The returned DicomDataSet can be assigned directly to

* a ModalityLutSequence object (which will make a copy of that data set).

*

* The data that is returned is still owned by this object

* and may not be deleted.

* If this object goes out of scope, or is otherwise deleted, the pointer

* will become invalid.

*

* @param n the index of the sequence item (data set)to retrieve

* @return pointer to data set at the given index in the sequence, or NULL

* if the requested index is zero, and the sequence element exists, but is

* zero length.

* Throws DCSException if that element has not been set (not in dataset).

* Throws DCSException if the requested item is not present in the sequence

* (excepting case of requesting item 0, for a zero length sequence)

*

*/

DicomDataSet* modalityLutSequence(INT32 n=0) const

 throw(DCSException);

/**

Page 162

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

* modalityLutSequence()

* set a new value for the Modality LUT Sequence element.

* dicom tag = (0028, 3000)

* overwrites any existing element with tag E_MODALITY_LUT_SEQUENCE

*

* The sequence is created with one data set which is copied from

* the argument's data.

* @param data the ModalityLutSequence object from which the sequence data set will

* be copied.

* @return nothing

*/

void modalityLutSequence(ModalityLutSequence& data);

/**

* modalityLutSequence()

* set a new value for the Modality LUT Sequence element.

* dicom tag = (0028, 3000)

* overwrites any existing element with tag E_MODALITY_LUT_SEQUENCE

*

* The sequence is created with the data sets which are copied from

* each element of the argument vector.

* @param data the vector of ModalityLutSequence objects from which the sequence

* data set(s) will be copied.

* @return nothing

*/

void modalityLutSequence(std::vector<ModalityLutSequence>& data);

See the program $DCF_ROOT/devel/csrc/examples/ex_iod for an example of using this

generated class to access fields in a DICOM image.

Note that you do not need to use IOD wrapper objects, since DicomDataSet, DicomElement,

DicomSequence, and other classes can be used directly, which in many cases may be a more

convenient approach.

 Page 163

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

9. Configuring DCF Applications

Applications using the DCF can be designed to run with no externally provided configuration files or

data. All settings can be controlled at runtime using available API’s. Often however, the quickest way

to produce commercial quality applications is to leverage the configuration data architecture available

to the DCF. To complicate matters further, various combinations of “handle it all yourself” and “use

DCF configuration facilities and data files” can be built.

9.1. Configuration Files and the CDS interface

DCF C++, Java and C# applications use the CDS (Configuration Data Service) component to read and

write configuration data. CDS defines several key classes or interfaces: CFGAttribute – essentially a

name/value string pair; CFGGroup – a named collection of CFGAttribute and nested CFGGroup

objects; and CFGDB – which provides methods to load and store data to persistent storage. The standard

implementation of the CDS::CFGDB interface stores data in text files, either directly or via the

DCDS_Server application (Distributed CDS Server). DCDS_Server also stores data in text files, but

provides higher-level functionality such as multi-process safe data access, observer notifications when

objects of interest are changed, and the ability to see the repository as a simple hierarchy of

addressable groups and attributes. The application NDCDS_Server provides configuration DB server

capabilities for C#.Net clients.

The following is an example configuration file:

File comment

group comment

[group_name]

attribute comment

attrname = value

multival_attr_name = val_1

multival_attr_name = val_2

multival_attr_name = val_3

multi_line_attr = aaaaaaaaaaaaaaaaaaaaaaaaa \

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb\

cc

[group_name/sub_group_name]

attr = value

Notice that there is no CFGFile object. A file is represented as a CFGGroup. If the DCDS_Server is

used, file system directories are also represented as CFGGroup objects.

The full name of any CFGGroup or CFGAttribute includes the names of all of its parent objects, up

to some root, separated with the “/” character.

The DCDS_Service allows an arbitrary collection of directories and configuration files to appear as a

single hierarchy of CFGGroup and CFGAttribute objects. From the programmers’ perspective there

is a simple hierarchical object database. Since the persistent storage for this data is simply directories

and text files, maintenance procedures are simple and flexible.

An alternate implementation might use some other persistent representation (e.g., XML files, SQL DB

tables, Windows Registry, etc). As long as the CFGDB interface can provide the notion of a hierarchy

of groups and attributes, the underlying format is unimportant.

Configuration files or CFGGroup objects are used throughout the DCF. Configuration data is normally

stored under the directory indicated by the DCF_CFG environment variable (usually

Page 164

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

$DCF_ROOT/cfg). A configuration group name /apps/defaults/dcf_store_scu indicates the file

$DCF_CFG/apps/defaults/dcf_store_scu. To describe a file that is outside of the DCF_CFG

directory (and/or that will not be handled by the DCDS_Server), add the “file:/” prefix to the name. For

example:

dcf_pg –f file://tmp/image.cfg

indicates the file /tmp/image.cfg.

dcf_pg –f file:/image.cfg

indicates the file ./image.cfg.

dcf_filter –f file:/C:/temp/filter1.cfg

indicates the file C:\temp\filter1.cfg.

Perl scripts can access CDS data using the CFG*.pm modules located in $DCF_ROOT/lib/perl5.

9.1.1. Using cds_client to access data in the configuration database

If the DCDS_Server is running, cds_client can be used to read or write from the configuration

database. For example:

cds_client loadgroup /procs

will list all server processes that have saved their process configuration to the CFGDB.

cds_client loadgroup /components/cpp_lib/DCS/debug_controls

will list all defined debug settings for the DCS C++ library component.

cds_client saveattr

/apps/defaults/dcf_store_scp/DCS/association_manager/tcp_port 104

will change the port that will be used to accept DICOM associations by the store SCP application.

Note: Use ncds_client.exe to interact with the C# NDCDS_Server.

9.1.2. Receiving notifications of updated data

If the DCDS_Server is running, applications may be notified when data is changed. This allows an

application to react to changes in the data. For example, most DCF applications “listen” to their own

debug_flags attribute in their process configuration; this allows them to change dynamically the amount

of debugging information that is output when a user (or another application) changes the value of the

debug_flags attribute.

In order to be notified when an object changes, a process must register as an observer of the object.

(Note that a process can be an observer of several objects, not just one, and that multiple processes may

be observing the same object.) This is done via the CFGDB method register(). When the object

changes, the process’s notify() method is called with the name of the object that changed. The

process may then read the updated value and proceed accordingly.

If the process is observing changes in a CFGAttribute, it will be notified when that attribute changes.

Processes may also observe changes in CFGGroups. In this case, they will be notified if a change occurs

in the group or in any of the group’s sub-groups and attributes, including in sub-groups of those sub-

groups, and so on.

For example, suppose we have the following CFGGroup:

 Page 165

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

[tmp]

[tmp/status]

device_mno_status = ERROR

[tmp/status/status_info]

device_xyz_status = NORMAL

device_abc_status = NORMAL

The C++ example ex_notify listens to changes in the CFGGroup /tmp/status/status_info. If

the value of the attribute device_abc_status in that CFGGroup is changed to “ERROR”, ex_notify

will be alerted to the change and can react to the change (in this case, ex_notify will display the new

values of the attributes in the group). If another process is registered as an observer of the attribute

device_abc_status, it will also be notified of the change in value. It will not be notified, however, if the

value of device_xyz_status changes. If the CFGGroup /tmp/status is changed, ex_notify will not

be notified of the change unless that change affects the status_info sub-group – for example, deleting

the /tmp/status group will cause ex_notify to be notified; changing the value of

device_mno_status will not cause ex_notify to be notified. Adding a new attribute

device_pqr_status to the status_info group would cause any listeners to the tmp, status, and

status_info groups to be notified – this includes the ex_notify example.

9.2. Application and Process Configurations

The APC::AppControl interface uses the CDS to manage two special configuration objects

(CFGGroups). The application configuration (app config for short) provides initial settings for the

program and is optional. The process configuration (“proc config” for short) reflects the current settings

for the program. (Note: the process configuration was called “application instance configuration” in

earlier DCF releases.) At runtime, most configuration data is read from the Process configuration.

Changes made to the application configuration normally take effect the next time the application is run.

(Note that in C#, the AppControl and CFGDB common service interfaces are contained in the

LaurelBridge.DCF assembly.)

Log/Debug tracing control is a special case of using application or process configuration data.

9.2.1. Application Configuration Settings

The application configuration contains the initial settings for a program that is run. The same program

may be invoked multiple times with different application configurations. A program may be run with

no application configuration.

Each LBS DCF program has a default application configuration. These are typically found in the group

/apps/defaults. The application configuration used for a program can be specified on the command

line using the –appcfg option, e.g.,

-appcfg /apps/defaults/some_cfg

or

-appcfg file:/C:/temp/my_custom_cfg

Application configurations can be created by hand, or automatically generated by dcfmake.pl. The

genappcfg.pl utility can generate an application configuration by specifying changes to the default

or any other existing application configuration.

Note that some programs may require additional configuration data. For example,

ex_nprint_client or ex_nstore_client can take a job configuration on their command line.

Page 166

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

9.2.1.1. Structure of an application or process configuration

The application or process configuration contains one sub-group for each library component that is used

by the application and one sub-group for the application itself. Configuration files follow the same

format for each supported language. For example, a C# application “my_scp_program” that uses the

C# ABC, DEF, and XYZ libraries will contain the following groups:

[application_info]

name = my_scp_program

description = example application

app_component_name = cs_app/my_scp_program

execution_state = STOPPED

[required_components]

component = cs_lib/ABC

component = cs_lib/DEF

component = cs_lib/XYZ

[cs_app]

[cs_app/my_scp_program]

debug_flags = 0

my_cfg_1 = xxxxxx

my_cfg_2 = xxxxxx

[cs_lib]

[cs_lib/ABC]

debug_flags = 0

abc_cfg_1 = xxxxxx

[cs_lib/DEF]

debug_flags = 0

def_cfg_1 = xxxxxx

[cs_lib/XYZ]

debug_flags = 0

xyz_cfg_1 = xxxxxx

9.3. Process Configuration Settings

The process configuration contains the current settings for a program that is running.

9.3.1. Process configuration with AppControl setup

If AppControl_a.setup() is invoked to initialize the application control component, an application

configuration is required. The process configuration is created initially from a copy of the application

configuration. After creating the initial process configuration, it may be modified by command line

arguments that were passed to the AppControl_a.setup() method. For example:

-apc “/cs_lib/DCS/AssociationManager/server_tcp_port=1234”

Will override the value for the attribute server_tcp_port in the group

cs_lib/DCS/AssociationManager.

The process configuration can optionally be written to the CFGDB data base. The default CFGDB

name for this will be “/procs/<base-name-of-program-exe>.<process-id>”, e.g.,

“/procs/dcf_print_scp.4355”

The proc cfg name can be specified on the command line using the -proccfg option, e.g.,

-proccfg /procs/dcf_store_scp.001

 Page 167

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

9.3.1.1. Monitoring the Process Configuration

An external application can monitor the process configuration in the CFGDB for changes that are made

as the application runs. Likewise an application can opt to be notified if the process configuration data

in CFGDB is changed. If this mode is selected, AppControl automatically reloads the process

configuration data before sending notifications to user code. By using this technique, applications can

easily support reconfiguration without the need to shutdown and restart. (See Section 9.1.2 below for

more information.)

9.3.2. Process configuration without AppControl setup

If no application configuration is available, the process configuration will be constructed dynamically

as sub groups are referenced.

If the application configuration does not exist, data for the process configuration will be read from the

/components group in the CDS repository. For example, if library code asks AppControl for the group

“java_lib/DCS” and that group is not present in the proc config, the group “DCS” in the file

components/java_lib/DCS will be loaded. If that data is not available, then compiled-in data from the

component’s (assembly/package/dll) CINFO class is loaded.

9.3.3. Creating a custom application configuration

Every DCF application is given an application configuration at runtime. This configuration contains

data used by the application component, and each library component linked by the application. By

default the generated configuration apps/defaults/<application_name> is used. This can be overridden

with the –appcfg <cfgname> command line option, which is processed by the

APC_a::AppControl_a class. The alternate configuration can be a hand modified copy of the default,

or can be automatically generated by making modifications to another configuration.

Custom Application Config files are stored in the $DCF_ROOT/devel/cfgsrc directory. If the file

has the extension .cac, then it is processed by the genappcfg.pl utility. A “.cac” file is in the form of

other configuration files, however certain attributes contain instructions to the genappcfg.pl program.

The update_cds.pl script will invoke genappcfg.pl as needed to created custom application

config files when the CDS repository is being updated.

The following example describes the process of creating a custom application configuration from a

default application configuration.

Here is a .cac file example. The file is named:

$DCF_ROOT/devel/cfgsrc/apps/PrintSCP/PrintSCP1.cac

Page 168

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

 [config_control]

base = /apps/defaults/print_server

target = /apps/PrintSCP/PrintSCP1

remove_group = DCS/supported_sop_classes

[DCS]

[DCS/scp_options]

timeout = 30

[DCS/supported_sop_classes]

sopclass = 1.2.3.4

sopclass = 1.2.3.5

[LOG_a]

+output = /tmp/additional_log_output

The config_control group contains only instructions to the genappcfg.pl program.

base defines the starting configuration. We load a copy of that configuration from the file system,

relative to $CFGGENDIR. This becomes the working configuration.

target is the output or destination configuration that also will be written relative to $CFGGENDIR.

remove_group means that the group having the given name in the working configuration is to be

deleted. A likely reason to remove a group is so that it can be entirely replaced with contents

from this file.

After any groups have been removed from the working configuration, the remainder of the custom app

config is processed.

For each additional group, if that group does not exist in the working configuration, it is created.

For each attribute in the custom app config group, one of two things will happen.

• If the attribute name begins with '+', then the attribute having the same name in the working

config is located. The values in the custom app config are then added to the existing attribute's

values. If no such attribute exists, it is created with only the new values.

• If an attribute name does not start with '+' then any attribute in the working config with that name

is first deleted, before the new attribute is added.

If a group is being modified, then the comments from the base configuration for that group will remain

in the target configuration.

If a group is being added (or replaced), the comments from the custom app config will accompany the

group.

Attributes or attribute values that are added or replaced are always accompanied by the corresponding

comments from the custom app config

Using the following as the base configuration,

[DCS]

debug_flags = 0

[DCS/scp_options]

port = 3004

timeout = 10

max_concurrent_associations = 8

[DCS/supported_sop_classes]

sopclass = 1.2.3.4

sopclass = 1.2.3.5

 Page 169

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

sopclass = 1.2.3.6

sopclass = 1.2.3.7

[LOG_a]

debug_flags = 0

output = /tmp/logfile

the resulting output would be:

[DCS]

debug_flags = 0

[DCS/scp_options]

port = 3004

timeout = 30

max_concurrent_associations = 8

[DCS/supported_sop_classes]

sopclass = 1.2.3.4

sopclass = 1.2.3.5

[LOG_a]

debug_flags = 0

output = /tmp/logfile

output = /tmp/additional_log_output

The group DCS/supported_sop_classes which originally contained 4 attribute values was removed, and

replaced with the group containing 2 values.

The attribute timeout in the group DCS/scp_options was removed and replaced.

The attribute output in the group LOG_a was modified by adding a value. The original value was

preserved.

9.4. Log/Debug tracing control using “debug_flags”

Each DCF library or application component in a running process maintains a current “debug_flags”

setting. As code in a given component is executed, the bits that are set in debug_flags determine which

messages get logged. Other behavior may also be controlled by debug_flags.

The debug_flags for each application or library component are initialized from the current process

configuration. This means of course that their initial value comes from the application configuration.

If the CFDB is configured in server mode, those debug_flags attributes in the process configuration

are monitored for changes. If another application changes the debug_flags in the process

configuration, the DCF is notified and the new setting can be retrieved from the CFGDB.

API’s exist that allow programmers to directly get or set debug flags for components in their process.

Also service tools that provide convenient access to this special class of configuration data exist.

As applications become larger, and multiple developers create complex sub-systems, it is useful to

distinguish log/debug settings for each of those sub-systems. The DCF per-component debug_flags

provide an effective way to do this.

In practice, users may find that only certain debug flags are of interest to them. For instance, the

DIMSE and PDU logging settings controlled by the “cs_lib/DCS/debug_flags” attribute.

Custom user interfaces can easily be designed to manipulate only those debug settings appropriate for a

particular use case.

Refer to DCF.ComponentInfo constructor documentation as a reference.

Page 170

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

9.4.1. Example – Setting Debug Flags for an Example App

Suppose you want to enable some debug flags for the java_lib/DCS component/package to trace

network communications for the ex_jqr_scu example application..

Depending on how you are set up, there are a few ways to set debug flags.

1. If you have a configuration file for the app.

In this case you would look at $DCF_CFG/apps/defaults/ex_jqr_scu, then you could set

the attribute "debug_flags" under the section "[java_lib/DCS]" to the value 0x360000.

For example, you would change the default text show below to match the suggestion above:

#==

per-instance information for the DCS component

#==

[java_lib/DCS]

turn on df_SHOW_WARNINGS by default

debug_flags = 0x00040

2. Setting the operating system environment.

You can set that same debug flag in the environment that for the app. In Linux, at a command

prompt you would say:

$ export java_lib_DCS_DF=0x360000

3. Programatically.

In your Java code, you can set debug flags by saying:

com.lbs.DCS.CINFO.instance().setDebugFlags(

 com.lbs.DCS.CINFO.df_DUMP_ACSE

 | com.lbs.DCS.CINFO.df_DUMP_PDATA

 | com.lbs.DCS.CINFO.df_SHOW_DIMSE_READ

 | com.lbs.DCS.CINFO.df_SHOW_DIMSE_WRITE);

4. Using the DCF Operations Web Interface.

If you want to know how to configure application debugging via the DCF Operations web

interface, refer to Section 2.4.3.8, Set Debug Flags. Basically, this convenience interface allows

a knowledgeable user to navigate to the config file of interest and set the debug flags of interest

by clicking a checkbox.

9.4.2. Defined Debug Flags

All of the debug flags for a given component are defined in the CINFO class in the corresponding

package.

One place to see that list of definitions is in the generated configuration data for a package that has a

cinfo.cfg and that was processed with dcfmake.pl. The list for an app is found in the appropriate

$DCF_CFG/components sub-directory.

For example, the file $DCF_CFG/components/java_lib/DCS shows each of the debug settings

defined for the DCS component.

Show below is the default list for this example:

 Page 171

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

[debug_controls]

debug_flag = df_SHOW_CONSTRUCTORS, 0x0001, show object constructors

debug_flag = df_SHOW_DESTRUCTORS, 0x0002, show object destructors

debug_flag = df_SHOW_GENERAL_FLOW, 0x0004, show general flow

debug_flag = df_SIMULATE_HARDWARE, 0x0008, simulate external devices

debug_flag = df_SHOW_CFG_INFO, 0x0010, show configuration information

debug_flag = df_SHOW_EXC_THROW, 0x0020, show exceptions before throwing

debug_flag = df_SHOW_WARNINGS, 0x0040, show warning message text

debug_flag = df_DUMP_ACSE, 0x020000, show ACSE pdu data

debug_flag = df_DUMP_PDATA, 0x040000, show PDATA pdu summary

debug_flag = df_DUMP_PDATA_VERBOSE, 0x080000, show PDATA pdu data (can be very verbose)

debug_flag = df_SHOW_DIMSE_READ, 0x100000, show DIMSE message reads

debug_flag = df_SHOW_DIMSE_WRITE, 0x200000, show DIMSE message writes

debug_flag = df_TCP_NETWORK, 0x400000, show tcp/ip network related debugging

debug_flag = df_COMPRESSION, 0x800000, show compression transfer syntax codec

 debugging

debug_flag = df_VERBOSE, 0x1000000, show various verbose debug messages

debug_flag = df_IDLE_TIMERS, 0x2000000, trace association idle timeout logic

debug_flag = df_FILTER_SUMMARY, 0x4000000, show summary of filters applied

debug_flag = df_FILTERS, 0x8000000, trace data-set/dimse-message filtering

debug_flag = df_VERBOSE_DICOM_IO, 0x10000000, show detailed information while reading or

 writing data sets

debug_flag = df_REJECT_TRANSIENT, 0x20000000, Force association rejection with transient

 status for testing

debug_flag = df_REJECT_PERMANENT, 0x40000000, Force association rejection with permanent

 status for testing

9.5. C#-related Configuration Notes

9.5.1. Description of DCF setup code

This block is copied from the example ex_nmwl_scp’s main() method:

LaurelBridge.CDS_a.CFGDB_a.setup(args);

LaurelBridge.APC_a.AppControl_a.setup(args, CINFO.Instance);

LaurelBridge.LOG_a.LOGClient_a.setup();

Each of these commands is explained further below. For the method calls which have an args

argument, args is a string array. For a command line program you would pass through the string array

passed into main from the command line to pass in parameters to custom implementations of our

common services. If you do not require any special parameters you can pass in some bogus array, e.g.,
string[] args = new string[0];

args[0] = stuff;

9.5.2. Common services setup description:

1. LaurelBridge.CDS_a.CFGDB_a.setup(args)

This call sets up the configuration database via .NET Remoting to the NDCDS_Server CFGDB Server.

The NDCDS_Server by default uses a filesystem database.

2. LaurelBridge.APC_a.AppControl_a.setup(args, CINFO.Instance)

This call sets up the Application Control component. AppControl manages and provides an API to

accessing an application’s configuration data at runtime, by default through the configuration database.

The second argument CINFO.Instance sets the application’s name and checks that any required

components for this application are located.

Page 172

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

3. LaurelBridge.LOG_a.LOGClient_a.setup();

This call sets up the reference C# implementation of our LOG interface. LOG writes log files to text

files. It can also “rotate” log files based on size. You can create your own implementation of the LOG

interface to control logging, e.g., write to the event log, etc. In your app you would replace this call line

with something like:

OEMname.LOG_a.SystemLogger.setup();

Usually you at least want the Configuration Database (CFGDB) server running. You can launch it by

running ndcds_server from a command line. You could remove this requirement by adding the line:

LaurelBridge.CDS_a.CFGDB_a.FSysMode = true;

before the line

LaurelBridge.CDS_a.CFGDB_a.setup(args)

However, by making this choice, you will lose the ability to change logging levels and other

instrumentation while the process is running. You will have to restart the process to make changes to

these settings, which may not be practical in a production environment.

 Page 173

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

10. Configuring DICOM features

10.1. Java and C# DICOM configuration

In addition to application or process global configuration settings, Java and C# applications can

configure many functions on a per association basis.

An application that is running may have multiple active DICOM associations or, more generally,

multiple I/O sessions. It is useful to allow these to be configured independently. An example of an I/O

session that is not a DICOM association is an image viewer application that is reading a DICOM file from

mass storage. Settings which may vary from one DICOM association or I/O session to another are

contained in the DicomSessionSettings object.

The DicomSessionSettings class is a convenient container for settings used by numerous DCF I/O

related classes.

10.1.1. Example Session settings

Session settings are normally established at the beginning of each association or I/O session and are

used throughout the life of that session. There are various mechanisms via the DCF API’s that

developers can provide their own choices for session settings. In the simplest case, default values are

read from the process configuration group:

cs_lib/DCS/default_session_cfg.

(Note: Configuration files are the same for all languages; “cs_lib” indicates a C# library component,

and “DCS” is “DICOM Core Services”, which is where all low level DICOM I/O support classes live. For

java applications the defaults are in java_lib/DCS/default_session_cfg)

For example, for the C# store SCP example program, the file:

%DCF_CFG%\apps\defaults\ex_nstore_scp

contains the default session settings. Comments in the sample configuration shown below explain

many of the configuration parameters.

[cs_lib/DCS/default_session_cfg]

Per session debug_flags. Currently, a subset of the DCS library

debug flags can be controlled on a per-session basis.

This can be very useful if you wish to enable verbose logging

when only certain applications connect.

df_SHOW_DIMSE_READ

df_SHOW_DIMSE_WRITE

df_SHOW_ACSE_PDU

df_SHOW_PDATA_PDU_SUMMARY

df_SHOW_PDATA_PDU_DATA

debug_flags = 0

The maximum PDU size we wish to read. This is communicated to the

peer device during association setup.

(Network sessions only)

max_read_pdu_size = 32768

The maximum PDU size we will write.

Page 174

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

(Network sessions only)

max_write_pdu_size = 32768

For testing, max-length-negotiation can be ignored, allowing

apps to write larger PDU’s than the remote AE expects.

(Network sessions only)

ignore_max_length_negotiation = NO

The number of seconds DCF will wait for a single PDU to be

written to a socket. -1 means wait forever. Note other timeouts

may prevent an application from hanging.

(Network sessions only)

pdu_write_timeout_seconds = -1

If true, then pixel data is not fully buffered. Instead, blocks of

data are read from the source and written to the destination of

a transfer as needed. This enables very large data sets to be

transferred without allocating large amounts of main memory.

Disabling this provides simpler access to applications that

ultimately want all of the pixel data in memory.

enable_streaming_mode = YES

Size in bytes of buffers that are used for streaming mode transfers.

stream_mode_buffer_size = 16384

Number of seconds that DicomSocket will delay before writing each

outbound PDU. This can be useful for testing, to force a timeout condition,

or to otherwise slow down data flow.

(Network sessions only)

pdu_write_delay_seconds = 0

Number of seconds that DicomSocket will delay before returning each

inbound PDU. This can be useful for testing, to force a timeout condition,

or to otherwise slow down data flow.

(Network sessions only)

pdu_read_delay_seconds = 0

debug support for forcing delays between PDU fragments

(Network sessions only)

socket_write_delay_seconds = 0

debug support for breaking PDU writes into multiple fragments

(Network sessions only)

max_bytes_per_socket_write = 0

name of extended data dictionary config group

extended_data_dictionary = /dicom/ext_data_dict

 Page 175

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Set flag to true if sequences should always be output with

undefined length.

always_write_undef_length_seqs = YES

Set flag to true if sequence items should always be output

with undefined length.

always_write_undef_length_seq_items = YES

Debug support for forcing end delimiters even for fixed length

sequences. (some implementations incorrectly do this, and may expect it).

always_write_seq_end_delims = NO

Debug support for forcing end item delimiters even for fixed length

sequence items. (some implementations incorrectly do this, and may expect

it).

always_write_seq_item_end_delims = NO

Number of seconds that AssociationAcceptor will wait for a message

before sending an A-Abort-PDU to the Requester and ending the

association. -1 means wait forever.

association_idle_timeout_seconds = 600

cmd line of program to be run at start of association

The following variables will be added to the environment

to be inherited by both the pre and post association scripts:

CALLING_AE_TITLE (client DICOM AE name)

CALLED_AE_TITLE (server DICOM AE name)

CALLING_PRESENTATION_ADDRESS (client network addr from AssociationInfo)

CALLED_PRESENTATION_ADDRESS (server network addr from AssociationInfo)

DCF_ROOT (value of env var if any)

DCF_USER_ROOT (value of env var if any)

DCF_CFG (value of env var if any)

DCF_TMP (value of env var if any)

DCF_LOG (value of env var if any)

PROC_CFG_NAME (name of proc configuration object if any)

pre_association_script =

cmd line of program to be run at end of association

post_association_script =

If set, we will not send out multiple pdv’s within a

single pdu. Some implementations can not handle pdu’s

Page 176

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

containing multiple pdv’s.

disable_multi_pdv_pdus = YES

Name of input filter configuration group or file.

For example “file:/C:/temp/some_filter_set.cfg”

or “/dicom/filter_sets/example_set1” (which will be located

in CDS CFGDB or beneath the $DCF_CFG directory.)

Incoming dimse messages are processed by input filters.

If this value is set, then the input_filters sub-group

shown below is ignored.

input_filter_cfg_name =

Name of output filter configuration group or file.

Outgoing dimse messages are processed by output filters.

If this value is set, then the output_filters sub-group

shown below is ignored.

output_filter_cfg_name =

Input filter configuration. Add one sub-group per filter.

[DCS/default_session_cfg/input_filters]

Output filter configuration. Add one sub-group per filter.

[DCS/default_session_cfg/output_filters]

Transfer syntaxes that will be accepted by an SCP.

The first transfer_syntax in this group that also exists in the

proposed list will be selected.

[DCS/default_session_cfg/supported_transfer_syntaxes]

implicit-little-endian

transfer_syntax = 1.2.840.10008.1.2

explicit-little-endian

transfer_syntax = 1.2.840.10008.1.2.1

explicit-big-endian

transfer_syntax = 1.2.840.10008.1.2.2

 Page 177

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

10.2. C++ DICOM configuration

There are a multiple options available for how a SCP selects a configuration for a new connection.

1. Have your SCP implement the LBS::DCS::AssociationCfgPolicyManager interface
Your SCP picks the configuration for each incoming association when asked via the

selectConfigurationName() method. You do this by creating some object that inherits

from LBS::DCS::AssociationConfigPolicyManager and implements the virtual

function selectConfigurationName(). You inform the AssociationManager of your

desire to control this part of the connection setup by invoking the

LBS::DCS::AssociationManager::registerConfigPolicyManager() method

(which is currently the method used by all DCF SCP applications).

All of those servers implement AssociationCfgPolicyManager similarly:

config-name-for-this-association = <value of cfg_name_base attribute> + "/" +

<called-ae-title>

The DCS/AssociationManager/default_association_config_name attribute is not used.

2. Let AssociationManager select a configuration for each new association.

AssociationManager uses the config attribute

DCS/AssociationManager/default_association_config_name to select a configuration for each

new association.

a) Do not set default_association_config_name

The new association will use the same configuration that the server is using. If you are

happy with a single set of settings for some SCP, this is the simplest option. Whatever

configuration is given to the server at startup (or /apps/defaults/<server_name>) will be used

for the daemon, and all associations.

This is the default in the DCS component configuration, which will be included in the

generated application configuration for any application that uses DCS.

b) Set default_association_config_name to something

The new association will use the specified configuration, after variables are expanded.

By allowing certain macros to be expanded in this string, the same behavior that previously

required a custom AssociationConfigPolicyManager can often be provided by the

default implementation. For example, the AssociationConfigPolicyManager code

could be removed from print_server, and the following attribute added to the configuration

for that program:

default_association_config_name = /apps/PrintSCP/${CALLED_AE_TITLE}

The available macros are explained in the config file comment:

[DCS/AssociationManager]

... text removed ...

If no other AssociationConfigPolicyHandler is installed, this string

will be used to generate the configuration name for an incoming association.

In addition to the DCF_VAR and DCF_FUNC text expansions that may occur during

the update_cds process, the following macros will be expanded after the

A-Associate-Request PDU is received from the SCU:

MACRO EXPANDS TO

=============== =============================

Page 178

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

${CALLED_TITLE} called ae title from pdu

${CALLING_TITLE} calling ae title from pdu

${CALLING_HOST} remote device's host address

${CALLED_HOST} local host address for connected socket

${CALLED_PORT} local port number for connected socket

If the string is empty or this parameter does not exist, then the

new association will use the configuration of the parent server.

default_association_config_name =

set to true if config data should be cached in SCP between associations

cache_association_configurations = true

10.3. Customizing DicomDataDictionary

The DicomDataDictionary class provides lookup services for DICOM attribute tags.

DicomDataDictionary also provides the UID (unique identifier) factory service. Both of these

services may be customized by the OEM.

There are two ways to add support for private DICOM tags, or to override the definitions for standard

tags. The easiest is to add a custom data dictionary configuration file. Any application that uses

DicomDataDictionary (e.g., all standard DCF apps), will now recognize the tags that are defined in

that file. By default, each application will look for a file named

$DCF_CFG/dicom/ext_data_dictionary. If this file exists, it is used to extend the standard data

dictionary. The name of the extended dictionary file can be changed for any application. An example of

the text in that file is:

The following is an example extended data dictionary file.

If this file is named "ext_data_dictionary", it will be

used whenever DCF libraries or applications look up information

for a DICOM tag. The name of the extended data dictionary file

is contained in the [DCS] configuration group of DICOM related

applications.

[elements]

0029,0010 = CS,1,Example Private Attribute 1

0039,0020 = US,1,Another Example Private Attribute 2

0049,1001 = DS,1,Private DS attribute 3

0049,1002 = UL,1,Private UL attribute 4

0049,1003 = SL,1,Private SL attribute 5

0049,1004 = UI,1,Private UI attribute 6

Alternately, the DicomDataDictionary class can be extended programmatically.

DicomDataDictionary uses the singleton pattern. Only one instance of that class exists in a process.

If the OEM creates a subclass of DicomDataDictionary, it will become the singleton instance, and

all DCF code will use it. See the online documentation for DicomDataDictionary for more

information about this.

To change the base for UIDs that are generated by the DCF system edit the file:

$DCF_CFG/dicom/uid. An example of the text in that file is:

[oem_info]

uid_prefix = 1.2.3.4

uid_system_prefix = 192.131.14.4

 Page 179

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

The configuration attribute uid_prefix can be used to provide an organization wide prefix for UIDs,

containing perhaps your organization’s ANSI identifier. If this attribute is not present, the DCF will

establish the prefix.

The attribute uid_system_prefix can be used to provide a per-host portion of each UID. If this attribute

is not present, the DCF will use a string based on the IP address of the system.

NOTE THAT IF YOU ARE USING PRIVATE IP ADDRESSES – e.g., 192.168.0.* – THE DEFAULT

IMPLEMENTATION MAY RESULT IN NON-UNIQUE UIDS.

When the DicomDataDictionary::makeUID() method is called, a uid is produced by combining

the results of DicomDataDictionary::getUIDPrefix() and

DicomDataDictionary::getUIDSuffix(). GetUIDPrefix() normally returns the concatenation

of the uid_prefix and uid_system_prefix strings. GetUIDSuffix() normally generates a suffix based

on an incrementing sequence number, combined with the current process ID.

By installing a custom DicomDataDictionary, any of the functions getUIDSuffix(),

getUIDPrefix() or initUIDPrefix() may be overridden by the user if an entirely different UID

generation algorithm is desired. For example, there may be a central UID factory implemented as a

COM or CORBA server. See the online documentation for DicomDataDictionary for more

information about this.

See the notes on UID generation in Appendix E: DCF MakeUID Function.

Page 180

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

11. DICOM Image Compression

The discussion of the use of JPEG encoding in medical imaging applications is the subject of many

other dedicated articles and publications, which should be referred to for additional details. Some

references are included below and in Appendix B: Section 3.

In general, careful attention must be given to the appropriate application of compression transfer

syntaxes. Some image formats cannot or may not be compressed by certain CODECs. The user has the

responsibility to determine the appropriateness of any compression selected; no compression should be

indiscriminately applied to all images. For additional details on transfer syntax encoding rules, see the

DICOM Standard, PS 3.5, Section 10 and Appendix A.

By default, DCF provides built-in libraries for compression. The Aware, Inc. JPEG library can also be

plugged in as an alternate implementation. See Section 11.4 below for details.

11.1. Lossy Compression Quality Issues & Concerns

The user of the lossy compression codecs has an obligation to assure that the choices made for

compression parameters result in usable images. Because the selection of lossy compression options

depends significantly upon the content of the images being compressed, the toolkit user must assume

responsibility for choosing lossy compression parameters appropriate to their data. There are some

images that should not be lossy compressed; the toolkit user must also determine the appropriateness of

lossy compression for their data – such a choice cannot be left to the codec.

There has been much research and much written on the use of lossy compression for medical images.

We recommend that users of lossy compression review the literature, especially as it relates to their

image types. One recent publication that summarizes some current thinking is:

CAR Standards for Irreversible Compression in Digital Diagnostic Imaging within Radiology, were

published by the Canadian Association of Radiologists in 2008 & revised in 2011 are available for

download from:

http://www.car.ca/uploads/standards%20guidelines/201106_EN_Standard_Lossy_Compression.pdf

Other information sources are listed in Appendix B: Section 3- Sources for Compression Related

Information.

11.2. JPEG Encoding Notes

11.2.1. JPEG Lossless (.57, .70) Encoding Notes

By default, DCF uses the C language IJG library for this compression transfer syntax.

Also note that the Aware, Inc. JPEG library can be plugged in as an alternate implementation. See

Section 11.4 below for details.

The name “JPEG Lossless, Non-Hierarchical (Process 14)” usually refers to DICOM transfer syntax

1.2.840.10008.1.2.4.57; we say “usually”, because the names used for various JPEG encodings vary,

depending on where you read them.

The default transfer syntax commonly used by DICOM for JPEG lossless is 1.2.840.10008.1.2.4.70; it

has a similar name, but usually incorporates the additional text “selector value 1”, or “predictor

selection 1”.

Both syntaxes use the same JPEG lossless encoding process, but the “.70” specifies the choice for one

of the codec parameters (predictor-selection-value = 1), whereas the “.57” does not specify that value

(in some implementations, the default for predictor-selection-value in “.57” is set to “6”).

 Page 181

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

From the DICOM standard in part 5, we see that “.70” is the default lossless syntax:

10.2 TRANSFER SYNTAX FOR A DICOM DEFAULT OF LOSSLESS JPEG COMPRESSION

DICOM defines a default for lossless JPEG Image Compression, which uses a subset of coding

Process 14 with a first-order prediction (Selection Value 1). It is identified by Transfer Syntax

UID = “1.2.840.10008.1.2.4.70” and shall be supported by every DICOM implementation that

chooses to support one or more of the lossless JPEG compression processes. …

The application configuration file contains the complete configuration data for the JPEG lossless codec.

For example, from %DCF_ROOT%\cfg\components\cs_lib\DCS:

[DCS/default_session_cfg/DicomJPEGCodec/jpeg_lossless]

If true, then 12 bit operations will use the 16 bit IJG library

no_12bit_lib = true

Set the jpeg predictor selection value for the .57 syntax.

If the transfer syntax is 1.2.840.10008.1.2.4.70,

this attribute is ignored and predictor selection value

is set to 1.

jpeg_predictor_selection_value = 6

If true, then derived image fields are added for monochrome

images. (Some implementations add derived fields, create

a new sop-instance-uid, etc. even for lossless compressed

images.)

add_derived_image_fields_for_mono = false

If true, then derived image fields are added for color

images. (Some implementations add derived fields, create

a new sop-instance-uid, etc. even for lossless compressed

images.)

add_derived_image_fields_for_color = false

If true, signed pixel data (pixel-representation = 1) will

be allowed.

allow_signed_data = false

If true, color pixel data will be allowed. Some implementations

don't implement lossless jpeg for color, since the RGB to YBR

color space conversion may result in some information loss.

allow_color = true

For codecs that support creating multiple threads for a single

compress or decompress operation.

max_threads = 1

If true, the TSCWIJG codec will scan the jpeg header for the

encoded bit depth and may override the bit depth defined by DICOM.

prescan_jpeg_header = true

If true, the header prescan will stop once the start of frame

tag has been processed. If false, and df_COMPRESSION is set,

all jpeg header items will be logged to the log stream.

stop_scanning_after_sof = true

Sanity check the rows, columns and samples per pixel in the

jpeg header, and throw an exception if these values are not

consistent with the values defined by the DICOM header.

check_jpeg_dimensions = true

Page 182

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

11.2.2. JPEG Lossy (.50, .51) encoding notes

By default, DCF uses the C language IJG library for this compression transfer syntax.

Note that the Aware, Inc. JPEG library can be plugged in as an alternate implementation. See Section

11.4 below for details.

Note that it is only legal to use JPEG.50 to encode 8-bits-allocated/8-bits-stored images, and only legal

to use JPEG.51 to encode 16-bits-allocated/12-bits-stored images. Attempting to use these transfer

syntaxes to encode images with something other than the appropriate bits allocated value should

generate a message stating: “invalid non 8-bit data for jpeg.50” or “invalid non 12-bit

data for jpeg.51”. See DICOM Standard, PS 3.5-2011, Section 10 for additional details.

When you compress images to JPEG Baseline Process 1 (1.2.840.10008.1.2.4.50) or any other lossy

compression, the result is a new image (being lossy compressed, the result image will not be exactly

identical to the source image); a new image requires a new SOP Instance UID, according to the DICOM

standard. In such a case, the DCF will automatically create a new SOP Instance UID for the image and

add to the dataset any necessary derived fields to show that the image was compressed at some point in

time. (One possible result of this is that, as you are testing a DCF-based application by having it

compress the same image again and again, you may appear to be getting duplicate images – each new

image will have a new SOP Instance UID.)

One way to avoid the creation of new UIDs is to use JPEG .70 compression (1.2.840.10008.1.2.4.70 –

JPEG Lossless First Order Prediction). JPEG .70 is a lossless compression – since the resulting image

will be identical to the source image, a new UID is not required.

DCF will automatically change the photometric interpretation of an RGB uncompressed dataset to

YBR_FULL_422 for the compressed dataset as specified by DICOM. DCF will automatically change

the photometric interpretation of a YBR_FULL uncompressed dataset to YBR_FULL_422 for the

compressed dataset as specified by DICOM.

See Section 11.1, Lossy Compression Quality Issues & Concerns for additional comments.

The application configuration file contains the complete configuration data for the JPEG lossy codec.

For example, from %DCF_ROOT%\cfg\components\cs_lib\DCS:

[DCS/default_session_cfg/DicomJPEGCodec/jpeg_lossy]

lossy compression quality : 0 to 100

compression_quality = 75

If true, then 12 bit operations will use the 16 bit IJG library

no_12bit_lib = false

If true, derived image elements are added to data sets

as they are written. This includes changing Image-Type,

and adding Source-Image-Sequence and Derivation-Code-Sequence.

A new sop-instance-uid will be created for the output data set.

add_derived_image_fields = true

If true, signed pixel data (pixel-representation = 1) will

be allowed.

allow_signed_data = false

For codecs that support creating multiple threads for a single

compress or decompress operation.

max_threads = 1

If true, the TSCWIJG codec will scan the jpeg header for the

encoded bit depth and may override the bit depth defined by DICOM.

prescan_jpeg_header = true

If true, the header prescan will stop once the start of frame

 Page 183

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

tag has been processed. If false, and df_COMPRESSION is set,

all jpeg header items will be logged to the log stream.

stop_scanning_after_sof = true

Sanity check the rows, columns and samples per pixel in the

jpeg header, and throw an exception if these values are not

consistent with the values defined by the DICOM header.

check_jpeg_dimensions = true

11.2.3. JPEG 2000 Lossless (.90) encoding notes

By default, DCF uses the C language JasPer library for this compression transfer syntax.

Also note that the Aware, Inc. JPEG library can be plugged in as an alternate implementation. See

Section 11.4 below for details.

DCF will automatically change the photometric interpretation of an RGB uncompressed dataset to

YBR_RCT for the compressed dataset as specified by DICOM. An image with photometric

interpretation YBR_FULL will be compressed without the JPEG2000 multi-component-transform

being applied and the photometric interpretation will be left as YBR_FULL.

The application configuration file contains the complete configuration data for the JPEG 2000 lossless

codec. For example, from %DCF_ROOT%\cfg\components\cs_lib\DCS:

[DCS/default_session_cfg/DicomJPEGCodec/jpeg2000_lossless]

override all jasper options by using this attribute

use "\" to end lines for a multi-lined attribute value.

Do not use with Aware plugin

jpeg2000_codec_options =

If true, then derived image fields are added for monochrome

images. (Some implementations add derived fields, create

a new sop-instance-uid, etc. even for lossless compressed

images.)

add_derived_image_fields_for_mono = false

If true, then derived image fields are added for color

images. (Some implementations add derived fields, create

a new sop-instance-uid, etc. even for lossless compressed

images.)

add_derived_image_fields_for_color = false

set max tile width: 0 means full frame size

max_tile_width = 0

set max tile height: 0 means full frame size

max_tile_height = 1024

For codecs that support creating multiple threads for a single

compress or decompress operation.

max_threads = 1

11.2.4. JPEG 2000 Lossy (.91) encoding notes

By default, DCF uses the C language JasPer library for this compression transfer syntax.

Also note that the Aware, Inc. JPEG library can be plugged in as an alternate implementation. See

Section 11.4 below for details.

When you compress images to JPEG 2000 Lossy (1.2.840.10008.1.2.4.91) or any other lossy

compression, the result is a new image (being lossy compressed, the result image will not be exactly

Page 184

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

identical to the source image); a new image requires a new SOP Instance UID, according to the DICOM

standard. In such a case, the DCF will automatically create a new SOP Instance UID for the image and

add to the dataset any necessary derived fields to show that the image was compressed at some point in

time. (One possible result of this is that, as you are testing a DCF-based application by having it

compress the same image again and again, while you may appear to be getting duplicate images – each

new image will actually have a new SOP Instance UID.)

One way to avoid the creation of new UIDs is to use JPEG .90 compression (1.2.840.10008.1.2.4.90 –

JPEG 2000 Lossless). JPEG .90 is a lossless compression – since the resulting image will be identical

to the source image, a new UID is not required.

DCF will automatically change the photometric interpretation of an RGB uncompressed dataset to

YBR_ICT for the compressed dataset as specified by DICOM. An image with photometric

interpretation YBR_FULL will be compressed without the JPEG2000 multi-component-transform

being applied and the photometric interpretation will be left as YBR_FULL.

Our testing also has shown that, occasionally, for certain 16-bit input images that use very little of the

dynamic range available to them, J2K-lossy compression artifacts can arise. These artifacts change as a

function of the number of compression_levels, but only in cases where the input image uses very

little of its dynamic range.

The following block shows an example of the quality related configuration data for the J2K-lossy codec

from an application configuration file:

[DCS/default_session_cfg/DicomJPEGCodec/jpeg2000_lossy]

override all options by using this attribute

use "\" to end lines for a multi-lined attribute value

jpeg2000_codec_options =

Specify the compression ratio

compression_ratio = 15

Specify the number of jpeg2000 compression levels

compression_levels = 4

The number of compression_levels corresponds to the number of levels in the dyadic

decomposition of the Discrete Wavelet Transform performed within the J2K compression algorithm.

You would never want to use “1” as the value for this configuration parameter – our testing has shown

unacceptable artifacts whenever 1 was used for the number of compression_levels.

We recommend setting the compression_levels in the configuration for JPEG Lossy (.91) to “4”

when using the default JasPer library implementation, only because we have yet to see the compression

show significant “troubles” at that level for any images we have tested. Empirically, a value of “4” has

resulted in near-optimal PSNR (Peak Signal-to-Noise Ratio) without compression artifacts over a wide

range of images (different SOP classes, different bit depths, etc.). But ultimately, of course, that is no

solution to the general problem. If using the Aware, Inc., library, we recommend setting the

compression_levels in the configuration for JPEG Lossy (.91) to “3”, because the Aware, Inc.,

implementation uses this value as the additional number of levels, so the actual levels used will be “4”.

See Section 11.1, Lossy Compression Quality Issues & Concerns for additional comments.

The application configuration file contains the complete configuration data for the JPEG 2000 lossy

codec. For example, from %DCF_ROOT%\cfg\components\cs_lib\DCS:

[DCS/default_session_cfg/DicomJPEGCodec/jpeg2000_lossy]

override all jasper options by using this attribute

use "\" to end lines for a multi-lined attribute value.

 Page 185

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Do not use with Aware plugin

jpeg2000_codec_options =

Specify the compression ratio

compression_ratio = 2

Specify the number of jpeg2000 compression levels

compression_levels = 4

If true, derived image elements are added to data sets

as they are written. This includes changing Image-Type,

and adding Source-Image-Sequence and Derivation-Code-Sequence.

A new sop-instance-uid will be created for the output data set.

add_derived_image_fields = true

set max tile width: 0 means full frame size

max_tile_width = 0

set max tile height: 0 means full frame size

max_tile_height = 1024

For codecs that support creating multiple threads for a single

compress or decompress operation.

max_threads = 1

11.3. JPEG Decoding Notes

This section attempts to collect, identify, and explain some of the special cases likely to be encountered

when attempting to decode various JPEG or J2K compressed images. This section will likely always be

incomplete as there seems to be no end to the number of ways that images can be wrongly compressed.

11.3.1. Photometric Interpretation Problems

When encoding color images, the compression process may involve changing the color-space of the

image to achieve better compression results. The DICOM standard defines how the image header should

be modified to indicate what type of data is contained in the compressed code stream. When the image

is decoded or un-compressed, the photometric interpretation may be changed back to match the original

format. Much confusion exists in this area, and vendors often encode incorrect values for the

photometric interpretation. Monochrome images (photometric interpretation MONOCHROME1 or

MONOCHROME2) aren’t typically a problem since no color-space transforms are applied. The DCF

will detect and correct many problems in this area, but occasionally visual confirmation may be

required to identify a problem, and a filter or a custom transfer syntax codec may be needed to correct

an issue identified in this way.

11.3.2. JPEG Lossless (.57, .70) Decoding Notes

DCF will not change the photometric interpretation of a compressed dataset when decompressing it.

So, if the photometric interpretation of the compressed dataset is YBR_FULL it will still be

YBR_FULL after decompression.

11.3.3. JPEG Lossy (.50, .51) Decoding Notes

DCF will automatically change the photometric interpretation of an YBR_FULL_422 compressed

dataset to RGB for the uncompressed dataset as specified by DICOM.

Page 186

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

11.3.4. JPEG 2000 Lossless (.90) Decoding Notes

DCF will automatically change the photometric interpretation of an YBR_RCT compressed dataset to

RGB for the uncompressed dataset as specified by DICOM. If the photometric interpretation in the

compressed dataset is YBR_FULL, it will remain YBR_FULL after decoding.

11.3.5. JPEG 2000 Lossy (.91) Decoding Notes

DCF will automatically change the photometric interpretation of an YBR_ICT compressed dataset to

RGB for the uncompressed dataset as specified by DICOM. If the photometric interpretation in the

compressed dataset is YBR_FULL, it will remain YBR_FULL after decoding.

11.4. Using Aware, Inc JPEG Compression libraries

DCF based applications can be configured to use the Aware, Inc. JPEG codecs. The Aware, Inc. JPEG

libraries must be purchased from Aware, Inc. and are not included with the DCF SDK.

JPEG (.50,.51), JPEG Lossless(.70), JPEG 2000 (.91), and JPEG 2000 Lossless (.90) can be configured

separately to use the default JasPer implementation or the Aware, Inc. implementation. The Aware,

Inc. JPEG codec (awj2k.dll) must be located in the library search path of your application. The transfer

syntax JPEG Lossless (.57) is not supported by Aware, Inc. See section 11.2.1 for an explanation of the

differences between (.57) and (.70) transfer syntaxes.

The DCS (DICOM Core Services) component in a DCF based application’s configuration file is where

this can be configured.

11.4.1. C# configuration

Each JPEG transfer syntax has a configuration group that controls the JPEG library used for that syntax.

[cs_lib/DCS/DicomTSCWCodec/plugin_mappings/1.2.840.10008.1.2.4.50]

plugin_name = TSCWIJG

[cs_lib/DCS/DicomTSCWCodec/plugin_mappings/1.2.840.10008.1.2.4.51]

plugin_name = TSCWIJG

The “plugin_name” attribute is set to the deault library of TSCWIJG. To use Aware, Inc., change the

plugin_name attribute to TSCWAware. In this example DCF will use Aware, Inc. for the .50 transfer

syntax and IJG for the .51 transfer syntax.

[cs_lib/DCS/DicomTSCWCodec/plugin_mappings/1.2.840.10008.1.2.4.50]

plugin_name = TSCWAware

[cs_lib/DCS/DicomTSCWCodec/plugin_mappings/1.2.840.10008.1.2.4.51]

plugin_name = TSCWIJG

11.4.2. Java Configuration

Each JPEG transfer syntax has a configuration group that controls the JPEG library used for that syntax.

[java_lib/DCS/DicomTSCWCodec/plugin_mappings/1.2.840.10008.1.2.4.50]

plugin_name = TSCWIJG

[java_lib/DCS/DicomTSCWCodec/plugin_mappings/1.2.840.10008.1.2.4.51]

plugin_name = TSCWIJG

 Page 187

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

The “plugin_name” attribute is set to the deault library of TSCWIJG. To use Aware, Inc., change the

“plugin_name” attribute to TSCWAware . In this example DCF will use Aware, Inc. for the .50

transfer syntax and IJG for the .51 transfer syntax.

[java_lib/DCS/DicomTSCWCodec/plugin_mappings/1.2.840.10008.1.2.4.50]

plugin_name = TSCWAware

[java_lib/DCS/DicomTSCWCodec/plugin_mappings/1.2.840.10008.1.2.4.51]

plugin_name = TSCWIJG

11.4.3. C++ Configuration

Each JPEG transfer syntax has a configuration group that controls the JPEG library used for that syntax.

[cpp_lib/DCS/DicomTSCWCodec/plugin_mappings/1.2.840.10008.1.2.4.50]

plugin_name = TSCWIJG

[cpp_lib/DCS/DicomTSCWCodec/plugin_mappings/1.2.840.10008.1.2.4.51]

plugin_name = TSCWIJG

The “plugin_name” attribute is set to the deault library of TSCWIJG. To use Aware, Inc., change the

“plugin_name” attribute to TSCWAware. In this example DCF will use Aware, Inc. for the .50 transfer

syntax and IJG for the .51 transfer syntax.

[cpp_lib/DCS/DicomTSCWCodec/plugin_mappings/1.2.840.10008.1.2.4.50]

plugin_name = TSCWAware

[cpp_lib/DCS/DicomTSCWCodec/plugin_mappings/1.2.840.10008.1.2.4.51]

plugin_name = TSCWIJG

Page 188

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

12. I/O Statistics for Java and C#

DCF components manage various I/O counters during network associations or other activities. These

counters are in the IOStatistics class.

The following counters are contained in the IOStatistics class:

• bytes_in

• bytes_out

• PDUs_in

• PDUs_out

• dimse_messages_in

• dimse_messages_out

• total_associations

• active_associations

• dimse_errors_in

• dimse_errors_out

The IOStatisticsManager is responsible for providing IOStatistics instances within a process,

and for making these statistics available to other entities for monitoring, etc.

The default IOStatisticsManager provides a single IOStatistics object for each process. That

object can optionally be written to the CFGDB on a periodic (configurable) basis. An observer app can

easily be written to monitor the appropriate file or group in the CFGDB for changes and can then report

the current counter values.

An OEM can easily provide a custom IOStatisticsManager; for example, one that uses an alternate

persistence mechanism. Also, statistics may be kept on a per-association, per session, or even per

system boundary rather than a per-process boundary.

 Page 189

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

13. Deploying a DCF-based application

13.1. Deployment Guidelines

To deploy an OEM application, an OEM must include various components of the DCF Toolkit.

Normally this means the run-time components: dlls, libraries, config files, etc. More details are found

below.

The DCF Toolkit is a separate product, sold to developers for the purpose of creating a derived

application. An OEM (developer) may not redistribute the entire DCF Toolkit as part of the OEM

application installation.

13.2. License Key for a Deployed Application

Every DCF-based application requires a License Key to run. How this works depends, in part, on the

terms of the licensing contract between the OEM and Laurel Bridge Software. There are two basic

situations that may occur:

13.2.1. OEM applications that ship with an installed license

For OEM applications that ship with an installed license, the OEM must do the following:

1. Copy the contents of the appropriate license key into the systeminfo file located in the

%DCF_ROOT%\cfg (or $DCF_ROOT/cfg) directory.

2. If you do not have a cfg directory in your deployment, then you should set the %DCF_CFG% (or

$DCF_CFG) environment variable to point to the location where you will install the license and

then place the systeminfo file in that location.

3. Track deployed licenses as required by the DCF License Contract agreement.

13.2.2. OEM applications that do not ship with an installed license

OEM applications that do not ship with an installed license typically require the end user to install a

license before the DCF-based portion of the OEM application will run. In this case, the OEM must

create or provide an application, utility, or some other method that allows the end user to select and

install the required DCF license key in the appropriate location in the OEM’s software installation

hierarchy.

An example license installation/upgrade utility is provided with the DCF Toolkit and all the sources are

included. This example may serve as a guide for developing an OEM license installer and may be

found in: %DCF_ROOT%\win_install\upgrade_license.nsi. This is, in fact, the script that is

used to install/upgrade the license used by a DCF product.

Basically this example license install/upgrade utility copies the contents of the appropriate license key

into the systeminfo file, which is normally located in the %DCF_ROOT%\cfg (or $DCF_ROOT/cfg)

directory. Note: if you do not have a cfg directory in your deployment, then you should set the

%DCF_CFG% (or $DCF_CFG) environment variable to point to the location where you will install the

license and then place the systeminfo file in that location.

Page 190

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

A typical OEM deployment plan for applications that do not ship with an installed license might look

something like the following:

1. Install the OEM application – this installation would include all appropriate DCF files, but no

DCF license key file (i.e., no systeminfo file).

2. An attempt to use a DCF component without a valid license present causes the DCF system to

write an error to the system console and exit. The OEM application should check for the

presence of a DCF license file and post some friendly message telling the end user how they can

purchase and install the appropriate license file to enable the desired DCF-based functionality.

3. Note: You may run the dcf_info utility command to check the validity of the installed license.

Running dcf_info –c produces “VALID” or “INVALID”; running dcf_info –C produces

a more verbose message. See the dcf_info usage statement for more information.

4. The end user orders and receives a license file, then installs it on their target system using the

license installation mechanism provided by the OEM.

5. The next time the end user runs the OEM application, the DCF license key is found and the

DCF-based functionality is available.

13.2.3. OEM applications that use an activatable license

It is possible to ship an OEM application with an activatable license – see Appendix J: Product

Licensing and Activation for information on this option.

13.3. Limiting the DCF libraries required for Deployment

To deploy applications or code that incorporate features, libraries, or utilities based on the DCF Toolkit,

an OEM must include various components and applications based on how the OEM application is

designed, built, and deployed.

One approach is to deploy all of the DCF runtimes, as well as all potential third-party applications and

runtimes. This may be the simpler approach, but may include more than is desired. This section

describes how to restrict what is deployed to the minimal set of runtimes that are required by the OEM

application.

Some third-party software may be required by DCF-based applications. For example, when the DCF

service tools and web-based service interface is deployed, then the following may need to be installed

on the target platform:

• Perl

• Java

• Java Advanced Imaging (JAI)

• Java Advanced Imaging I/O (JAI I/O)

These allow certain Java applications to read and write DICOM files with JPEG data. They are not

required for the DCF but may be necessary depending on the JPEG compression options you elect

to use. The class com.lbs.DCS.JAIUtil still uses JAI and perhaps some of JAI I/O. If you're not

using that class, and you are not using DicomEncapsulatedCodecJAI, which is not used by

default, then you don't need to include JAI or JAI I/O.

• Apache

There are specific DCF related components that must be deployed to the target platform. These may

include portions of the following:

 Page 191

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

• Configuration information – the DCF configuration (CFG) database tree and its associated text

files (for more information about the DCF configuration database, see Section 9, Configuring

DCF Applications).

• O/S environment settings – appropriate O/S environment settings must be made. This may

involve setting environment variables that are read by the DCF libraries. See Section13.4.2,

which is an installer example that shows the setting of some environment variables that an

application may require.

• O/S-specific dependent dll’s or libraries – ensure that the target contains all libraries required

by the O/S (e.g., a Windows application might require that the target platform has the .NET

framework installed, while a Linux application might require some GNU libraries).

• OEM application dependent dll’s or libraries – Running a dependency check on the OEM

executable to find the dependent libraries should show the minimal set of required libraries (e.g.,

on Windows, run dumpbin /dependents <filename>; on Linux run ldd <filename>).

These DCF related components are described more fully below:

Configuration information – DCF applications and components store their configuration

information in text files in the $DCF_CFG directory (usually $DCF_ROOT/cfg). Applications put

their files in the apps/defaults subdirectory, while components will have theirs in the appropriate

subdirectory under the components subdirectory: cpp_lib for C++ libraries, java_lib for Java

libraries, cs_lib for C# assemblies, etc. Applications that use DCF libraries and classes may need to

include the corresponding configuration files in a tree-structured directory hierarchy. It is important

to note that the DCF run-time license file must be included in the CFG database. Copy your run-time

license file to $DCF_ROOT/cfg/systeminfo and be sure your deployment includes this file.

O/S environment settings – The DCF often uses environment variables to specify the paths to

components. For example, the DCF_CFG variable may be set to indicate where the configuration

files are located – in fact, this environment variable usually must be set for proper operation of a

DCF-based application. Your installer may need to set this or other environment variables or settings,

or tell the user to set these configurations.

O/S-specific dependent dll’s or libraries – All applications use some libraries that are part of the

operating system and that did not come with the DCF toolkit. When deploying your application onto

a new system, you may have to include some of these libraries along with your application –

sometimes this is because that DLL (or library) does not exist on the target system, other times your

application may require a different version of the DLL than is already present on the system. These

dependencies can be determined by knowing what files your application and its components are

linking with. On Windows, this can be determined with the “dumpbin /dependents

<filename>” command; for Linux, you would use the “ldd <filename>” command. A Java app

could require that the target system have Java, JAI, and JAI_imageio installed and in its PATH.

Applications built with Microsoft Visual Studio 8 may need additional libraries to be installed in

order for them to operate correctly. Microsoft has provided the “VC 8.0 Redistributable” to install

updated versions of some C++ libraries, including the MSVCRT libraries (C run-time libraries). This

should be installed for VC8-based DCF applications. Additionally, applications built with Visual

Studio 7 or Visual Studio 8 or higher may need to have the appropriate .NET Frameworks installed so

that DCF libraries can, if necessary, be installed into the Global Assembly Cache (GAC).

OEM application dependent dll’s or libraries – There are also the DCF libraries that the

application uses, and this must be included. The dependencies can be determined by the “dumpbin”

or “ldd” commands (as described above; see below for an example) for C++ applications.

Page 192

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

For Java applications, the DCF dependencies are those libraries and classes that are imported. At a

minimum, that includes DCF_DCFCore.dll and its dependencies. An example showing this is

included in Section 5.4:

For C# applications, the DCF dependencies are those libraries and classes that are imported or

included for use by the application, including DCF_TSCW.dll and its dependencies.

See also Section 13.4.1 - Language Specific Standalone Installation below.

Note: the OEM must also include any libraries developed specifically for the OEM application to use.

13.3.1. Find Application Dependencies - Windows

The OEM must determine the dependencies for the components they choose to deploy. Shown below is

an example for one Windows application.

Windows example – check for dependencies in dcf_store_scp.exe:

C:\DCF-3.3.360c\bin>dumpbin /dependents dcf_store_scp.exe

Microsoft (R) COFF/PE Dumper Version 9.00.30729.1

Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file dcf_store_scp.exe

File Type: EXECUTABLE IMAGE

 Image has the following dependencies:

 MSVCR90.dll

 MSVCP89.dll

 omniORB414_vc9_rt.dll

 omnithread34_vc9_rt.dll

 omniDynamic414_vc9_rt.dll

 DCF_DCFCore.DLL

 DCF_LOG_a.DLL

 DCF_CDS_a.DLL

 DCF_APC_a.DLL

 DCF_DDS_a.DLL

 DCF_DCS.DLL

 DCF_DSS.DLL

 KERNEL32.dll

 Summary

 1000 .data

 1000 .pdata

 4000 .rdata

 1000 .reloc

 1000 .rsrc

 5000 .text

C:\DCF-3.3.36c\bin>

Alternately, you might find the same information by using a program like “Dependency Walker”

(http://www.dependencywalker.com).

Troubleshooting application dependencies may be aided by the use of a freeware tool like FileMon for

Windows, which may be downloaded from:

http://www.sysinternals.com/utilities/filemon.html .

 Page 193

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

In their own words: FileMon monitors and displays file system activity on a system in real-time. Its advanced

capabilities make it a powerful tool for exploring the way Windows works, seeing how applications use the files and DLLs,

or tracking down problems in system or application file configurations.

13.3.2. Find Application Dependencies - Linux

The OEM must determine the dependencies for the components they choose to deploy. Shown below is

an example for one Linux application.

Linux example – check for dependencies for dcf_store_scp:

$ cd $DCF_ROOT/DCF

$. ./dcf.env

[snip]

$ cd $DCF_ROOT/bin

$ ldd dcf_store_scp

 libDCF_dcfcore.so => /home/dcfbuild/DCF/lib/libDCF_dcfcore.so (0x40018000)

 libDCF_dcfutil.so => /home/dcfbuild/DCF/lib/libDCF_dcfutil.so (0x4005d000)

 libDCF_log_a.so => /home/dcfbuild/DCF/lib/libDCF_log_a.so (0x40063000)

 libDCF_dlog.so => /home/dcfbuild/DCF/lib/libDCF_dlog.so (0x40079000)

 libDCF_apc_a.so => /home/dcfbuild/DCF/lib/libDCF_apc_a.so (0x40084000)

 libDCF_cds_a.so => /home/dcfbuild/DCF/lib/libDCF_cds_a.so (0x400b4000)

 libDCF_dcds.so => /home/dcfbuild/DCF/lib/libDCF_dcds.so (0x400d3000)

 libDCF_dds_a.so => /home/dcfbuild/DCF/lib/libDCF_dds_a.so (0x400ee000)

 libDCF_dds.so => /home/dcfbuild/DCF/lib/libDCF_dds.so (0x400ff000)

 libDCF_dcs.so => /home/dcfbuild/DCF/lib/libDCF_dcs.so (0x40104000)

 libDCF_ddcs.so => /home/dcfbuild/DCF/lib/libDCF_ddcs.so (0x40286000)

 libDCF_boost_regex.so => /home/dcfbuild/DCF/lib/libDCF_boost_regex.so (0x402dd000)

 libDCF_dss.so => /home/dcfbuild/DCF/lib/libDCF_dss.so (0x4038e000)

 libomniORB4.so.0 => /opt/omniORB-4.1.4/lib/libomniORB4.so.0 (0x00f75000)

 libomnithread.so.3 => /opt/omniORB-4.1.4/lib/libomnithread.so.3 (0x0038b000)

 libpthread.so.0 => /lib/i686/libpthread.so.0 (0x405e3000)

 libstdc++.so.5 => /opt/gcc-3.2.2/lib/libstdc++.so.5 (0x405f8000)

 libm.so.6 => /lib/i686/libm.so.6 (0x406b3000)

 libgcc_s.so.1 => /opt/gcc-3.2.2/lib/libgcc_s.so.1 (0x406d6000)

 libc.so.6 => /lib/i686/libc.so.6 (0x406df000)

 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

$

13.3.3. Find Application Dependencies - Java

The OEM must determine the dependencies for the components they choose to deploy. There are

numerous open source tools that may be used to assist in finding the dependencies, or it may be done as

a manual process.

For Java applications, the DCF dependencies are those libraries and classes that are imported by the

application. At a minimum, that includes DCF_DCFCore.dll and its dependencies. An example

showing these and other dependencies for a sample Java application is included in Section 5.4

Java applications that read and write JPEG data might require the JAI and JAI I/O packages, depending

on the compression options that you desire.

Page 194

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

13.4. Deploying standalone applications containing DCF code

Information is provided in the language specific sections of this guide that show examples of how to

deploy simple standalone DCF-based applications. An example of a more full-featured installer is

shown below.

13.4.1. Language Specific Standalone Installation

For a C++ application – see Section 4.3: Deploying a Simple Standalone DCF C++ Application.

For a C# application – see Section 6.4: Deploying a Simple C# Standalone Application

For a Java application – see Section 5.4: Deploying a Simple Standalone DCF Java Application

13.4.2. An Example Application Installer

An example installer for a standalone Windows application (dcf_filter) is provided with the DCF

Toolkit distribution. Look at the file %DCF_ROOT%\win_install\ex_one_app.nsi. This is an

example configuration file for generating a NullSoft Installer application for Windows platforms.

(See NSIS – Nullsoft Scriptable Install System, http://nsis.sourceforge.net/.)

The contents of this file may be used as a guideline for selecting the required components for other

target platforms as well. If you look closely at this file, you can see that it includes the main

application (dcf_filter), the DCF libraries that the application uses, any additional libraries for it, and

the application’s configuration file – it shows what files need to be installed and where to put them.

The installer example also shows the setting of some environment variables that the application will be

using. This example installer also does other things and uses the NSIS syntax, but it gives a general

idea of how one goes about deploying a DCF application.

Example Windows NullSoft installer configuration file – ex_one_app.nsi:

;---

; ex_one_app.nsi

;

; This is an example installer for how to install a single DCF-based

; application. This is a very simple installer: it shows how to

; install the files and set up the bare minimum of environment variables

; necessary, and also how to uninstall the files and the env vars.

;

; In this case, it installs the dcf_filter application and the libraries

; and configuration files needed for it to run. It also shows how to

; uninstall the dcf_filter and its files.

;

;---

;---

Write environment changes for the current user only

!define ALL_USERS ; uncomment this if changes should be for all users

!include WriteEnvStr.nsh

;---

!include ReplaceInFile.nsh

The files are referenced from the DCF_ROOT directory

!cd ".."

; The name of the installer

Name "DCF Filter"

; The file to write

OutFile "ex_one_app.exe"

 Page 195

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

; The default installation directory

InstallDir "$PROGRAMFILES\DCF Filter"

!define DCF_ROOT $%DCF_ROOT%

;---

; Indicate where additional libraries should be gotten from

…

;---

; Version information

; (all these may be overriden on compilation with /D switches)

…

;---

; Indicate the version of the product in the installer

…

;==

; Pages

;==

Page directory # Let the user choose where to install the app

Page instfiles # Install the files

UninstPage instfiles # on uninstall, remove the files

;---

; The files to install

Section "" ;No components page, name is not important

 ; Set output path to the installation directory.

 SetOutPath $INSTDIR

 ; Put these files there:

 ; The main executable

 File bin\dcf_filter.exe

 ; the DCF libraries

 File lib\DCF_APC_a.dll

 File lib\DCF_CDS_a.dll

 File lib\DCF_DCFCore.dll

 File lib\DCF_DCFUtil.dll

 File lib\DCF_LOG_a.dll

 File lib\DCF_DCS.dll

 File lib\DCF_DLOG.dll

 File lib\DCF_boost_regex.dll

 ; the support libraries (names may be slightly different from that shown here)

 File ${DEVEL_OMNI_BIN}\omniORB414_rt.dll

 File ${DEVEL_OMNI_BIN}\omnithread34_rt.dll

 File ${DEVEL_OMNI_BIN}\omniDynamic414_rt.dll

 ; Include a sample config file for the users

 File devel\csrc\dcf_filter\sample.cfg

 ; Systeminfo is needed for the license

 SetOutPath $INSTDIR\cfg

 File cfg\systeminfo

 ; The appcfg must be included – this is the configuration file for the app

 SetOutPath $INSTDIR\cfg\apps\defaults

 File cfg\apps\defaults\dcf_filter

Page 196

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

 ; Set the DCF_CFG environment variable so the app

 ; knows where to find the config files

 Push "DCF_CFG"

 Push "$INSTDIR\cfg"

 Call WriteEnvStr

 ; Optional: Set the DCF_ROOT environment variable and include

 ; the dcfversion file - these are useful if the user specifies

 ; '-l' on the app's command line.

 ; Push "DCF_ROOT"

 ; Push "$INSTDIR"

 ; Call WriteEnvStr

 ; SetOutPath $INSTDIR

 ; File dcfversion

 ; Replace references to the development box directory structure

 ; (this is optional)

 Push "${DCF_ROOT}" # First change any backslashes to slashes

 Push "\"

 Call StrSlash

 Pop $0

 Push "$INSTDIR" # First change any backslashes to slashes

 Push "\"

 Call StrSlash

 Pop $1

 Push $0 # Now change all references: $0 becomes $1

 Push $1 # (i.e., $DCF_ROOT --> $INSTDIR)

 Push all

 Push all

 Push "$INSTDIR\cfg\apps\defaults\dcf_filter"

 Call AdvReplaceInFile

 ; Indicate that the log server should not be used by default

 ; (this is optional as well)

 Push "use_log_server = TRUE"

 Push "use_log_server = FALSE"

 Push all

 Push all

 Push "$INSTDIR\cfg\apps\defaults\dcf_filter"

 Call AdvReplaceInFile

 ; Create the log directory (for when the user specifies -l

 ; on the app's command line)

 CreateDirectory "$INSTDIR\tmp\log"

 ; Create the uinstaller

 WriteUninstaller "$INSTDIR\uninst-one-app.exe"

 ; This is a very basic installer, so we don't bother with

 ; Start menu options.

SectionEnd ; end the section

;---

; This shows how to uninstall the application.

Section Uninstall

…
 [remainder of file ommitted]

13.5. DICOM Ports

 Page 197

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

The DCF can use almost any port that you specify for its communication with other DICOM SCUs and

SCPs. The default DICOM ports that should be used are 104 and 11112. The DCF will automatically

open up a “hole” through the Windows Firewall for port 104 when you install it; if you wish to use port

11112, you should create a similar “hole” for it in the Firewall.

Note that port 104 may be used by any of the DCF’s SCPs – but they do not use it by default as you

develop with the DCF. When you are deploying your application, you should select (or allow the user

to select) the port that will be used for DICOM communication. You should write your installer to open

the “hole” for the necessary port(s) that you will be using.

It is also possible to set the DICOM port that is being used – one way to do this is to use the

configuration GUIs that are provided by the DCF (see Appendix H: , Section 3: CDS Configuration

Shortcuts for more information about this option). It is also possible to set the DICOM port manually or

during the installation, but it is up to you to configure the Firewall as necessary.

Page 198 Appendix A: Glossary of Terms

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Appendix A: Glossary of Terms

TSee also %DCF_ROOT%\Docs\DCF-DICOM-Glossary.pdf

A

Abstract Syntax: A DICOM term which is identical to a DICOM SOP Class; it identifies a set of SOPs which, when taken

together, represent a logical grouping. An Abstract Syntax identifies one SOP Class or Meta SOP Class.

ACR: UAUmerican UCUollege of URUadiology.

Annotation Box: A DICOM name for annotation text printed on the film or other media.

ANSI: UAUmerican UNUational USUtandards UIUnstitute.

Application Entity (AE): A DICOM term for defining a particular user at an IP address.

Association: A DICOM term for a communication context which is used by two Application Entities that communicate

to one another.

Association Negotiation: The software handshaking that occurs between two DICOM Application Entities to set up an

Association.

Attribute: Each DICOM information object has its own set of characteristics or attributes. Each attribute has a name and

may have a value (see IOD), depending on its category.

B

Big Endian: A term for encoding data where the most-significant byte appears first and remaining bytes follow in

descending order of significance; sometimes known as “Motorola” format (see Little Endian). (The term is used

because of an analogy with the story Gulliver’s Travels, in which Jonathan Swift imagined a never-ending fight

between the kingdoms of the Big-Endians and the Little-Endians, whose only difference is in where they crack open

a hard-boiled egg.)

C

Calling (Requesting) AE Title: The name used by the receiver in a DICOM Association to indicate which Application

Entity it received the data from. It is the AE Title of the AE that is initiating the transfer.

Called (Receiving) AE Title: The name used by the sender in a DICOM Association to indicate which Application Entity

it wants to transmit its data to. It is the AE Title of the AE that is receiving the transfer.

Command Element: An encoding of a parameter of a command which conveys this parameter’s value.

Command Stream: The result of encoding a set of DICOM Command Elements using the DICOM encoding scheme.

Composite Information Object: A DICOM information object (see IOD) whose attributes contain UmultipleU real world

objects.

Conformance: Conformance in the DICOM sense means to be in compliance with the parts of the DICOM Standard.

Conformance Statement: A document whose organization and content are mandated by the DICOM Standard, which

allows users to communicate how they have chosen to comply with the Standard in their implementations (see Section

8).

Combined Print Image: a pixel matrix created by superimposing an image and an overlay, the size of which is defined

by the smallest rectangle enclosing the superimposed image and overlay.

D

Data Dictionary: A registry of DICOM Data Elements which assigns a unique tag, a name, value characteristics, and

semantics to each Data Element (see the DICOM Data Element Dictionary in DICOM PS 3.6-2004).

Data Element: A unit of information as defined by a single entry in the data dictionary. An encoded Information Object

Definition (IOD) Attribute that is composed of, at a minimum, three fields: a Data Element Tag, a Value Length, and

a Value Field. For some specific Transfer Syntaxes, a Data Element also contains a VR Field where the Value

Representation of that Data Element is specified explicitly.

Appendix A: Glossary of Terms Page 199

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Data Set: Exchanged information consisting of a structured set of Attribute values directly or indirectly related to

Information Objects. The value of each Attribute in a Data Set is expressed as a Data Element.

Data Stream: The result of encoding a Data Set using the DICOM encoding scheme (Data Element Numbers and

representations as specified by the Data Dictionary).

DICOM: UDUigital UIUmaging and UCoUmmunications in UMUedicine.

DICOMDIR File: A unique and mandatory DICOM File within a File-set which contains the Media Storage Directory

SOP Class. This File is given a single component File ID, DICOMDIR.

DICOM File: A DICOM File is a file with a content formatted according to the requirements of DICOM PS 3.10-2004.

In particular such files shall contain, the File Meta Information and a properly formatted Data Set.

DICOM File Format: The DICOM File Format provides a means to encapsulate in a File the Data Set representing a

SOP Instance related to a DICOM Information Object.

DICOM File Service: The DICOM File Service specifies a minimum abstract view of files to be provided by the Media

Format Layer. Constraining access to the content of files by the Application Entities through such a DICOM File

Service boundary ensures Media Format and Physical Media independence.

DIMSE: UDIUCOM UMUessage USUervice UEUlement. This represents an abstraction of a common set of things that a user would

do to a data element, would likely use over and over, and would appear in various different contexts.

DIMSE-C: UDIUCOM UMUessage USUervice UEUlement—UCUomposite.

DIMSE-C services: A subset of the DIMSE services which supports operations on Composite SOP Instances related to

composite Information Object Definitions with peer DIMSE-service-users.

DIMSE-N: UDIUCOM UMUessage USUervice UEUlement—UNUormalized.

DIMSE-N services: A subset of the DIMSE services which supports operations and notifications on Normalized SOP

Instances related to Normalized Information Object Definitions with peer DIMSE-service-users.

E, F

File: A File is an ordered string of zero or more bytes, where the first byte is at the beginning of the file and the last byte

at the end of the File. Files are identified by a unique File ID and may by written, read and/or deleted.

File ID: Files are identified by a File ID which is unique within the context of the File-set they belong to. A set of ordered

File ID Components (up to a maximum of eight) forms a File ID.

File ID Component: A string of one to eight characters of a defined character set.

File Meta Information: The File Meta Information includes identifying information on the encapsulated Data Set. It is

a mandatory header at the beginning of every DICOM File.

File-set: A File-set is a collection of DICOM Files (and possibly non- DICOM Files) that share a common naming space

within which File IDs are unique.

File-set Creator: An Application Entity that creates the DICOMDIR File (see DICOM PS 3.10, section 8.6) and zero or

more DICOM Files.

File-set Reader: An Application Entity that accesses one or more files in a File-set.

File-set Updater: An Application Entity that accesses Files, creates additional Files, or deletes existing Files in a File-

set. A File-set Updater makes the appropriate alterations to the DICOMDIR file reflecting the additions or deletions.

Film Box: A Normalized Information Object which is the DICOM name for the equivalent of a sheet of physical film.

Film Session: A Normalized Information Object which is the DICOM name for the equivalent of a typical “study” or

“series”.

G, H, I

Image Box: A Normalized Information Object which is the DICOM name for the equivalent of a typical “frame” or

“image”.

Information Object Class or

Information Object [Definition] (IOD): A software representation of a real object (e.g., CT Image, Study, etc.). An

Information Object is generally a list of characteristics (Attributes) which completely describe the object as far as the

Page 200 Appendix A: Glossary of Terms

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

software is concerned. The formal description of an Information Object generally includes a description of its purpose

and the Attributes it possesses.

Information Object Instance or

Instance (of an IOD): A software representation of a specific occurrence of a real object or entity, including values for

the Attributes of the Information Object Class to which the entity belongs..

J, K, L

Little Endian: A term for encoding data where the least-significant byte appears first and remaining bytes follow in

ascending order of significance; sometimes known as “Intel” format (see Big Endian).

LUT: ULUookUuUp UTUable.

M

Media Storage Application Profile: A Media Storage Application Profile defines a selection of choices at the various

layers of the DICOM Media Storage Model which are applicable to a specific need or context in which the media

interchange is intended to be performed.

Media Format: Data structures and associated policies which organize the bit streams defined by the Physical Media

format into data file structures and associated file directories.

Media Storage Model: The DICOM Media Storage Model pertains to the data structures used at different layers to achieve

interoperability through media interchange.

Media Storage Services: DICOM Media Storage Services define a set of operations with media that facilitate storage to

and retrieval from the media of DICOM SOP Instances.

Message: A data unit of the Message Exchange Protocol exchanged between two cooperating DICOM Application

Entities. A Message is composed of a Command Stream followed by an optional Data Stream.

Meta Service-Object Pair (SOP) Class: a pre-defined set of SOP Classes that may be associated under a single SOP for

the purpose of negotiating the use of the set with a single item.

Meta SOP Class: A collection or group of related SOP Classes identified by a single Abstract Syntax UID, which, when

taken together, represent a logical grouping and which are used together to provide a high-level functionality, e.g.,

for the purpose of negotiating the use of the set with a single item.

Module: A logical group of the valid attributes of DICOM information objects.

N

NEMA: UNUational UEUlectrical UMUanufacturers UAUssociation.

Normalized Information Object: A DICOM Information Object (see IOD) whose attributes contain a UsingleU real world

object. Note: the differentiation of normalized versus composite information object definitions is not strongly

enforced in DICOM 3.0.

O, P

Physical Media: A piece of material with recording capabilities for streams of bits. Characteristics of a Physical Media

include form factor, mechanical characteristics, recording properties and rules for recording and organizing bit

streams in accessible structures

Presentation Context: A Presentation Context consists of an Abstract Syntax plus a list of acceptable Transfer Syntaxes.

The Presentation Context defines both UwhatU data will be sent (Abstract Syntax) and UhowU the data are encoded to be

sent (Transfer Syntax).

Print Job SOP Class: A DICOM representation of a Print Job which consists of a set of IODs which describe a Print Job

and a set of services which can be performed on those IODs.

Print Management Service Class or

Print Service Class (PSC): A DICOM term for a logical grouping of Service Classes which all involve printing, also

referred to as Print Management Service Class (an example of a Meta SOP Class).

Printer SOP Class: A DICOM representation of a Printer which consists of a set of IODs which describe a Printer and a

set of services which can be performed on those IODs.

Appendix A: Glossary of Terms Page 201

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Protocol Data Unit (PDU): A data object which is exchanged by software protocol devices (entities, machines) within

a given layer of the protocol stack.

Q, R

Real-World Activity: Something which exists in the real world and which pertains to specific area of information

processing within the area of interest of the DICOM Standard. A Real-World Activity may be represented by one or

more SOP Classes.

Real-World Object: Something which exists in the real world and upon which operations may be performed which are

within the area of interest of the DICOM Standard. A Real-World Object may be represented through a SOP Instance.

S

Secure DICOM File: A DICOM File that is encapsulated with the Cryptographic Message Syntax specified in RFC 2630.

Secure File-set: A File-set in which all DICOM Files are Secure DICOM Files.

Secure Media Storage Application Profile: A DICOM Media Storage Application Profile that requires a Secure File-set.

Service Class: A group of operations that a user might want to perform on particular Information Objects. Formally, a

structured description of a service which is supported by cooperating DICOM Application Entities using specific

DICOM Commands acting on a specific class of Information Object.

Service Class Provider (SCP, Provider, Server): A device (DICOM Application Entity (DIMSE-Service-User)) which

provides the services of a DICOM Service Class or Classes which are utilized by another device (SCU) and which

performs operations and invokes notifications on a specific Association.

Service Class User (SCU, User, Client): A device (DICOM Application Entity (DIMSE-Service-User)) which utilizes

the DICOM Service Class or Classes which are provided by another device (SCP) and which invokes operations and

performs notifications on a specific Association.

Service-Object Pair (SOP) Class: the union of a specific set of DIMSE Services and one related Information Object

Definition (as specified by a Service Class Definition) which completely defines a precise context for communication

of operations on such an object or notifications about its state.

Service-Object Pair (SOP) Instance: a concrete occurrence of an Information Object that is managed by a DICOM

Application Entity and may be operated upon in a communication context defined by a specific set of DIMSE

Services (on a network or interchange media). A SOP Instance is persistent beyond the context of its communication.

SOP Class: A DICOM term which is identical to an Abstract Syntax; it identifies a set of SOPs which, when taken

together, represent a logical grouping (see Meta SOP Class).

Storage Service Class (SSC): A DICOM term for a logical grouping of Service Classes which all involve storage of

images.

T

Tag: A unique identifier for an element of information composed of an ordered pair of numbers (a Group Number

followed by an Element Number), which is used to identify Attributes and corresponding Data Elements.

TCP/IP: UTUransmission UCUontrol UPUrotocol / UIUnternet UPUrotocol.

Transfer Syntax: A part of the DICOM Presentation Context which specifies a set of encoding rules that allow

Application Entities to unambiguously negotiate the encoding techniques (e.g., Data Element structure, byte ordering,

compression) they are able to support, thereby allowing these Application Entities to communicate.

U

Unique Identifier (UID): A globally unique identifier (based on the structure defined by ISO 8824 for OSI Object

Identifiers) which is assigned to every DICOM information object as specified by the DICOM Standard (see

Section 2.1.1.4) and which guarantees global unique identification for objects across multiple countries, sites, vendors

and equipment.

V

Value Representation (VR): A VR is the defined format of a particular data element.

Page 202 Appendix A: Glossary of Terms

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

W, X, Y, Z

- End of Glossary -

Appendix B: Bibliography Page 203

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Appendix B: Bibliography

1. The DICOM Standard

ACR (the American College of Radiology) and NEMA (the National Electrical Manufacturers

Association) formed a joint committee to develop a Standard for Digital Imaging and Communications

in Medicine (DICOM). The resulting DICOM standard is published by:

National Electrical Manufacturers Association

1300 N. 17th Street

Rosslyn, Virginia 22209 USA

See ACR-NEMA DICOM 3.0 Standard, Parts 1 through 18 (PS 3.1–PS 3.22); ©2020.

Copies of the chapters are available for http access at:

 http://medical.nema.org/dicom

and for ftp download at:

 ftp://medical.nema.org/MEDICAL/Dicom

Access to other NEMA related topics is via:

 http://medical.nema.org/

2. Integrating the Healthcare Enterprise (IHE)

IHE is an initiative by healthcare professionals and industry to improve the way computer

systems in healthcare share information. IHE promotes the coordinated use of established

standards such as DICOM and HL7 to address specific clinical needs in support of optimal

patient care. Systems developed in accordance with IHE communicate with one another

better, are easier to implement, and enable care providers to use information more

effectively. Physicians, medical specialists, nurses, administrators and other care

providers envision a day when vital information can be passed seamlessly from system to

system within and across departments and made readily available at the point of care.

IHE is designed to make their vision a reality by improving the state of systems integration

and removing barriers to optimal patient care.

(http://www.ihe.net/About/index.cfm)

The IHE Technical Frameworks are the detailed reference documents for implementing standards to

achieve successful data integration.

The IHE Technical Frameworks, available for download below, are a resource for users,

developers and implementers of healthcare imaging and information systems. They define

specific implementations of established standards to achieve effective systems integration,

facilitate appropriate sharing of medical information and support optimal patient care.

They are expanded annually, after a period of public review, and maintained regularly by

the IHE Technical Committees through the identification and correction of errata.

Copies are available at: http://www.ihe.net/Technical_Framework/index.cfm.

3. Sources for Compression Related Information

Many sources of information are available regarding both lossless and lossy compression as it applies to

DICOM and medical imaging. Users of lossy compression have an obligation to ensure the

Page 204 Appendix B: Bibliography

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

appropriateness of such compression for their images should they choose to apply it. References listed

below are in no way complete, they simply represent a starting point for additional reading.

Additional information on image compression in the DCF Toolkit is found in Chapter 11.

CAR Standards for Irreversible Compression in Digital Diagnostic Imaging within Radiology, were

published by the Canadian Association of Radiologists in 2008 & revised in 2011.

This standard validates the use of irreversible compression under certain defined

circumstances and for specified examination types. The specific recommendations appear

in section V. Modification of this standard is anticipated when validation of the use of

irreversible compression for thin slice CT is completed.

A copy is available for download from:

http://www.car.ca/uploads/standards%20guidelines/201106_EN_Standard_Lossy_Compression.pdf

The DICOM Committee has a working group dedicated to compression related issues as they apply to

the DICOM Standard. Reviewing their information, beyond what is already published in the standard, is

also advisable.

The DICOM Strategic Document is available from http://medical.nema.org/ and contains a

description of the various working groups and their purposes.

Working Group 4 (Compression) minutes are available for review from:
http://medical.nema.org/Dicom/minutes/WG-04/

Certain studies, reports, and sample images are available from
ftp://medical.nema.org/MEDICAL/Dicom/DataSets/WG04

Appendix C: Storing Images from Print SCP Page 205

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Appendix C: Storing Images from Print SCP

1. Collecting image and association info from Print_SCP

After each association with the dcf_print_scp has finished, you can run a program or script that gets

the images received by the dcf_print_scp and that also gets the pertinent association information

from the environment.

Listed below in section 1.2 is an example Windows batch (.bat) script.

• The script writes a file with a directory listing of the contents of the %DCF_TMP%\job_images

directory. This file will contain the names of the images received.

• Then the script moves the files into the SAME directory where the file was written.

• Then it writes the pertinent association information into that same file.

Please note: this is only a simple example. You should write your own script or program (batch, Perl,

C#, etc.) that will create a unique directory name for the images for a given association. Insert your

custom script into step 4 of the instructions below instead of the example batch script provided in

section 1.2.

1.1. Preparation and Configuration Steps

1. Set the dcf_print_scp configuration file to its default settings.

2. In the configuration file %DCF_ROOT%\cfg\apps\defaults\dcf_print_scp set the attribute

“max_concurrent_associations” to 1. This will ensure that only one association is writing to the

job_images directory at any given time.

That section of the file should look something like this:

maximum number of associations that can be simultaneously active (1-1024) -

the practical maximum depends on system resource availability.

max_concurrent_associations = 1

3. In the file %DCF_ROOT%\cfg\apps\defaults\PrinterServer set the attribute for OEMPrinter

debug_flags to 0x20000. By default the OEMPrinter component deletes images from the

scp_images directory after 20 seconds. This debug flag setting sets the OEMPrinter component

to NEVER delete images from the scp_images directory.

That section of the file should look something like this.

[OEMPrinter]

debug_flags = 0x20000

printer_script =

printjob_script =

printer_name = DCF Test Printer

manufacturer = Laurel Bridge Software

manufacturer_model_name = DCF_OEMPrinter_Simulator

device_serial_number = 1.2.3.4

software_version = 2.7.6b

date_of_last_calibration = 20000101

time_of_last_calibration = 162841

job_simulate_sleep_secs = 20

4. In the file %DCF_ROOT%\cfg\apps\PrintSCP\PrintSCP1 set the attribute of

post_association_script to the location of the attached batch file.

This section of that file would look something like this:

Page 206 Appendix C: Storing Images from Print SCP

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

pre_association_script =

cmd line of program to be run at end of association

post_association_script = C:\tmp\post.bat

1.2. Example Batch Script

Listed below is an example Windows batch (.bat) script.

• The script writes a file with a directory listing of the contents of the %DCF_TMP%\job_images

directory. This file will contain the names of the images received.

• Then the script moves the files into the SAME directory where the file was written.

• Then it writes the pertinent association information into that same file.

@ECHO OFF

dir %DCF_TMP%\job_images* >> C:\tmp\images\info.txt

move %DCF_TMP%\job_images* C:\tmp\images

date /T >> C:\tmp\images\info.txt

time /T >> C:\tmp\images\info.txt

echo Calling Presentation Address %DCF_CALLING_PRESENTATION_ADDRESS% >>

C:\tmp\images\info.txt

echo Called Presentation Address %DCF_CALLED_PRESENTATION_ADDRESS% >>

C:\tmp\images\info.txt

echo Calling AE Title %DCF_CALLING_AE_TITLE% >> C:\tmp\images\info.txt

echo Called AE Title %DCF_CALLED_AE_TITLE% >> C:\tmp\images\info.txt

1.3. Viewing Print SCP output via a web browser

The following feature is only currently available in the DCF Java Toolkit. It is a customization of the

C++ dcf_print_scp and the Java PrinterServer code and provides the ability to view the output

from Print SCP via a web browser. It is primarily useful as a debugging tool when developing print

related SCU code.

To activate this feature, do the following steps:

1. Edit cfg file: %DCF_CFG%\apps\defaults\PrinterServer

2. set attr: java_lib/OEMPrinter/device_behavior = create_web_files

3. Run: run_apache.pl

4. Select-a-configuration to start: print_server_win32.cfg

5. Run your SCU code. To run the DCF cmd line scu you can do:

6. cd %DCF_ROOT%\test\print

7. runscu_win.pl scu001

8. Point your favorite web browser to http://localhost/print_jobs or whatever URL is

appropriate for your system.

9. (You may need to modify your listening port as necessary to match your own configuration.)

The code that produces the html output is:

Appendix C: Storing Images from Print SCP Page 207

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

 jsrc/com/lbs/OEMPrinter/OEMPrinterDevice.java

Note: that this code also invokes dcm2jpeg.exe to render the image boxes.

Important: Print-SCP support is not available in all languages - e.g., to access print-scp in C# today,

one would need both the C++ dcf_print_scp and the Java PrinterServer code. These are

currently not included with the DCF C# toolkit.

Page 208 Appendix D: Using DCF Dicom Filters

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Appendix D: Using DCF Dicom Filters

1. Fixing or working-around protocol problems

DicomElementFilter is a subclass of DicomInputFilter that is used to modify header fields,

instances of DicomElement, or attributes that are not large binary arrays.

(Note – in a future DCF release, elements with multi-valued binary types may also be able to be

changed with DicomElementFilter.)

1.1. An application is sending an incorrect field in a DICOM print request

As an example, suppose some external application is sending an incorrect field in a DICOM print

request, and you can’t or don’t want to change that application’s source code.

And suppose your application is the standard dcf_print_scu, which reads a print job description

from a configuration file, and submits it to the LBS::DSS:PrintClient class for processing.

Furthermore, suppose that the orientation in the N-CREATE-RQ Film Box message is “PORTRAIT”

and you want it to be “LANDSCAPE” (for this example, ignore the fact that this field is normally read

from a configuration file, and you would ordinarily simply change that file).

Start the server using the web interface, or the command:

perl –S dcfstart.pl –cfg %DCF_CFG%\systems\print_server_win32.cfg

(Obviously, if you are connecting to an actual printer device, you don’t need to run a DCF server to

simulate a printer.)

Create a print job configuration file by saving the following text to the file print_job.cfg. Adjust

directories, hostnames, port numbers, etc., as needed. (See the attributes: client_address,

server_address, and persistent_id.)

[print_job_description]

calling AE

client_address = PrintSCU

called host:port:AE

server_address = localhost:2000:PrintSCP1

request_color = NO

request_print_job_sopclass = 0

poll_print_job = 0

print_job_poll_rate_seconds = 0

print_by_session = 0

response_timeout_seconds = 60

job_timeout_seconds = 180

implicit little endian

association_ts_uid = 1.2.840.10008.1.2

film_session_count = 1

[print_job_description/film_session]

number_of_copies = 1

print_priority = HIGH

medium_type = BLUE FILM

film_destination = MAGAZINE

film_session_label = test1

memory_allocation = 0

owner_id = dcftest

film_box_count = 1

[print_job_description/film_session/film_box_1]

image_display_format = STANDARD\1,1

annotation_display_fmt_id =

Appendix D: Using DCF Dicom Filters Page 209

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

film_orientation = PORTRAIT

film_size_id = 14INX17IN

magnification_type = NONE

smoothing_type = NONE

border_density = 0

empty_image_density = 0

min_density = 0

max_density = 400

trim = YES

configuration_information = NONE

illumination = 0

reflected_ambient_light = 0

requested_resolution_id = HIGH

image_box_count = 1

annotation_box_count = 0

presentation_lut_count = 0

[print_job_description/film_session/film_box_1/image_box_1]

image_position = 1

polarity = NORMAL

magnification_type = NONE

smoothing_type = NONE

configuration_information = NONE

requested_image_size = 0

reqd_decimatecrop_behavior = DECIMATE

overlay_box_count= 0

presentation_lut_count = 0

name of image file

persistent_id = /DCF-3.1.10c/test/images/mr-knee.dcm

transfer syntax of image file – leave blank for auto-detect

persistent_info = 1.2.840.10008.1.2

Enable the DIMSE Read/Write debug flags for the DCS library in the

/apps/defaults/dcf_print_scu application configuration using the web interface, or the

command:

cds_client saveattr /apps/defaults/dcf_print_scu/DCS/debug_flags

0x300000

Run the client with the new job configuration file

dcf_print_scu –f file:/print_job.cfg

Now, let’s create a filter set configuration to modify some field in the job. Save the following to a file,

filter1.cfg, for example.

[filter_1]

filter_type = DICOM_ELEMENT_FILTER

[filter_1/elements_to_match]

affected SOP class uid = Film Box

0000,0002 = 1.2.840.10008.5.1.1.2

command field = N-Create-Rq

0000,0100 = 0x140

[filter_1/elements_to_replace]

2010,0040 = LANDSCAPE

That configuration specifies one filter of type DICOM_ELEMENT_FILTER, and that only messages that

contain the fields defined in the elements_to_match group will be filtered, which should be the N-

CREATE-RQ for FilmBox. Before that message is sent (or received, depending on how we install the

Page 210 Appendix D: Using DCF Dicom Filters

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

filters), the elements_to_replace group will indicate that the field 2010,0040 (orientation) should be

added or replaced with a new value.

Modify the configuration for the dcf_print_scu application to use this filter set for processing out-

bound messages – either edit the configuration file %DCF_CFG%\apps\defaults\dcf_print_scu,

and restart the system, or run the command:

cds_client saveattr

/apps/defaults/dcf_print_scu/DCS/association/output_filters/filter_set

_name file:/filter1.cfg

(If you want to affect incoming messages, add the filter set to the “input_filters” group.)

Run the application again, and note the DIMSE Message debug output:

dcf_print_scu –f file:/C:/temp/print_job.cfg

If you want to see the effect at the printer server back end, set the debug flags for the OEMPrinter

library component in the PrinterServer process using the web interface, or use the command:

cds_client saveattr /procs/PrinterServer.001/OEMPrinter/debug_flags

0x40000

Run the command again, then examine the printer_server log file.

Stop the print server system using the web interface or the command:

dcfstop.pl

Note: see the online documentation for C++ class LBS::DCS::DicomElementFilter for more

information about this object (to access the on-line docs: from the DCF Remote Service Interface, click

on “docs”, then “C++ docs”, “namespace list”, “DCS”, and finally “DicomElementFilter”).

Appendix D: Using DCF Dicom Filters Page 211

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

1.2. Modifying the DIMSE messages sent by a Java application

This section discusses using DicomElementFilter with a Java application. This example can be

easily applied to any Java application that is performing DIMSE Message network I/O with another

AE.

To modify the DIMSE messages sent by a Java application, such as ex_jecho_scu, which is the

example Verification Client, perform the following steps:

Start a DCF system that includes a Verification SCP:

perl –S dcfstart.pl -cfg %DCF_CFG%/systems/jstore_server_win32.cfg

Change to the Java echo scu example directory:

cd %DCF_ROOT%\devel\jsrc\com\lbs\examples\ex_jecho_scu

Create a filter configuration in the file sample_filter.cfg with the following text:

 [filter_1]

filter_type = DICOM_ELEMENT_FILTER

[filter_1/elements_to_replace]

0010,0010 = This^Is^Bogus

This will perform the rather ridiculous action of adding a patient name DICOM attribute to any DIMSE

message that is sent.

Set this filter as the output filter set for the Java I/O library by running the following command (type as

one line!):

cds_client saveattr

/apps/defaults/ex_jecho_scu/java_lib/DCS/association/output_filters/fi

lter_set_name file:/sample_filter.cfg

Set the DIMSE Message debug flags for the Java I/O library using the web interface, or by running the

command:

cds_client saveattr

/apps/defaults/ex_jecho_scu/java_lib/DCS/debug_flags 0x300000

Run the Java SCU application:

jrun_example.pl com.lbs.examples.ex_jecho_scu.ex_jecho_scu StoreSCP1

localhost 2000

Page 212 Appendix D: Using DCF Dicom Filters

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

2. Using DicomTestFilter to support automated testing

DicomTestFilter is configured like other DicomInputFilters, but rather than modifying DIMSE

Messages or DICOM Data Sets, its purpose is to inject behavior into the system.

It can be used to force delays between messages, force exceptions to be thrown, or to abort the process.

See the generated documentation for the C++ class LBS::DCS::DicomTestFilter for additional

information.

Configuring an SCP to abort after receiving a particular message

As another example, configure a dcf_echo_scp to abort after receiving a C-Echo-Request message.

Follow these steps:

1. Create a filter set configuration by saving the following text to the file
%DCF_CFG%\dicom\filter_sets\abort_sample

Demo for use with dcf_echo_scp or other.

Server will abort when it receives C-Echo-Request

[filter_1]

filter_type = DICOM_TEST_FILTER

[filter_1/elements_to_match]

0000,0100 = 0x30

[filter_1/abort]

Note: If you want this configuration to be available permanently, create the file in the directory

%DCF_ROOT%\devel\cfgsrc\dicom\filter_configs and then run update_cds.pl to

install it to %DCF_CFG%.

2. Start the configuration database server and supporting tasks using the web interface, or by running

the command:
perl –S dcf_start.pl –cfg %DCF_CFG%\systems\dcds_server_win32.cfg

3. Modify the Echo SCP application’s configuration so that it applies the defined filter set to received

messages.
cds_client saveattr

/apps/defaults/dcf_echo_scp/DCS/association/input_filters/filter_set_n

ame /dicom/filter_sets/abort_sample

Note: You could have accomplished the same thing prior to starting dcds_server by editing the

file %DCF_CFG%/apps/defaults/dcf_echo_scp and then adding the filter_set_name

attribute to the DCS/association/input_filters group:

[DCS/association/input_filters]

filter_set_name = /dicom/filter_sets/abort_sample

4. Start the Verification or Echo SCP from the command line. (Note that all other pre-built

dcf_*_scp applications support Verification, but we’re not running them now.)
dcf_echo_scp

5. In another command window, run the Echo SCU
dcf_echo_scu localhost 2000

You should see the echo client application fail with an error similar to the following:

[ERROR(-1) 2004/08/05 17:14:28.721 dcf_echo_scu.25929/DCS thrd=2051

DicomSocket.cpp:464]

Error reading PDU:

DCSException:

Appendix D: Using DCF Dicom Filters Page 213

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

IOException:

IOReadException:

DicomSocket: OS socket read or recv failed: end of file

file descriptor = 12

remote address = localhost:3004

local address = 127.0.0.1:51417

This error is returned because the application dcf_echo_scp intentionally called abort() when it got

the C-ECHO-RQ message and dcf_echo_scu logged an error like the one above when it failed to

successfully read (i.e., receive) a C-Echo-Response message.

In your application, you might use such a configuration to test that the appropriate user notification is

generated on such a failure.

Simulating other types of error conditions by this approach is especially useful in DICOM testing

activities.

3. Logging/Debugging DICOM Filter Effects

Debug flags are a special type of configuration data that are defined for each application; they are

typically used to control logging verbosity. Most DCF applications “listen” to their own debug_flags

attribute in their process configuration; this allows them to change dynamically the amount of

debugging information that is output when a user (or another application) changes the value of the

debug_flags attribute.

The logging code that normally prints received DIMSE messages runs before the filtering code has

been executed. This is not very useful for debugging filtering problems. However, if you enable

df_VERBOSE debug flag in cpp_lib/DCS, you will get log output from the filters showing both before and

after contents of DIMSE messages. This logging should be much more helpful.

4. Using DCF DICOM Filters Overview

There are various ways filters can be configured.

Filters may be chained together. The input to the first filter is usually either a subclass of

DicomDeviceInput (e.g., DicomFileInput or DicomNetInput, which read from files or

association-sockets, respectively) or DicomDataInput, which is a pseudo-device that returns a

particular data set from memory when asked (similar to a MemoryInputStream in certain I/O

frameworks).

DCS.DimseMessageUser (the base class of DCS.AssociationAcceptor and

DCS.AssociationRequester, and thus all SCU’s and SCP’s) allows a set of input filters and/or

output filters to be defined in the session settings (DCS.DicomSessionSettings). These filters

will be applied to all DIMSE messages that are processed. Note that these filters are applied to

messages after all association negotiation has been completed.

Job descriptions for DSS.StoreClient or DPS.PrintClient can be defined such that each

image or instance is processed with a different set of filters. In this case, the image filtering is

performed prior to association negotiation, and prior to the application of any output_filters defined by

the DicomSessionSettings.

Filters can be created by user code to filter a data set as it is read from a file, and then the filtered data

set can be given to some DCF SCU to send as is.

Page 214 Appendix D: Using DCF Dicom Filters

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Note that filtering operations can be defined that can easily make an image invalid for a particular use.

For example, changing the SOP-CLASS-UID element in a C-Store-Request DIMSE message could

result in an image being received by an archive for what appears to be a SOP class that was not

originally negotiated.

5. DCF DICOM Filter Configuration Overview

One of the DCF’s most powerful features is the ability to process DICOM data sets or DIMSE messages

with collections of programmable filters. Developers can also implement their own custom filters and

have the DCF use them.

Every filter derives from DicomInputFilter. (You can use DicomInputFilter to filter “output” data as

well. We’ll discuss that later.)

Every DicomInputFilter is constructed with a CFGGroup that contains the filter_class_name

and/or the filter_type attributes. If the filter_type is known by the DicomFilterFactory, then the

correct type can be created. If a custom filter has been created, the filter_class_name allows the

factory to use reflection to create the filter. (Note that for C#, custom filters should also specify the

name of the assembly with the filter class, as “filter_assembly_name”. This is not necessary in Java,

which will search the CLASSPATH for the desired class.)

Additionally the sub-group [elements_to_match] may be present. This data defines DICOM

elements that must be present in the input data for the filter to be applied.

For example:

[filter_1/elements_to_match]

0010,0010 = Public^Jane^Q

instructs the filter to change data only if the input contains a DICOM patient name element (tag

0010,0010) with the value “Public^Jane^Q”.

Each DicomInputFilter sub class may add additional information to the filter configuration

CFGGroup. This additional information is typically in sub-groups beneath the top level.

DicomElementFilter is used to modify DICOM elements in a DIMSE message in various ways. It

is constructed with a configuration containing the following additional sub groups:

1. [elements_to_copy]

2. [elements_to_remove]

3. [elements_to_remove_if_null]

4. [elements_to_replace]

5. [elements_to_modify]

Each sub group defines one filtering operation. The filtering operations are performed in the following

order:

1. [elements_to_copy]

If this group is present, then only elements with tags contained in the cfggroup are “copied” from

input to output. All other elements in the input data are ignored and will not be copied to the output, i.e.,

this filter effectively removes all but the selected elements. If a tag is in the list of tags to copy, but is not

present in a particular data set, then nothing is done and this is not considered an error.

If this group is not present, the output data set starts as a full copy of the input data set.

2. [elements_to_remove]

Appendix D: Using DCF Dicom Filters Page 215

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

If this group is present, then any elements with tags contained in the cfggroup are removed from

the output data set.

3. [elements_to_remove_if_null]

If this group is present, then any elements with tags contained in the cfggroup that have a zero

length value are removed from the output data set.

4. [elements_to_replace]

If this group is present, then each attribute defines a DICOM Element that will be created and added to

the output data set. If the element previously existed in the data set, it is overwritten with the new

element. (Note: this could be called elements_to_add_or_replace.)

5. [elements_to_modify]

If this group is present, it is searched for sub groups. Each sub group defines modification rules for a

single element in the output data set.

For example, consider the following CFGGroup:

[elements_to_modify/1]

tag = 0010,0010

old_value = Smith^Joseph

new_value = Doe^John

new_case = U

move_to = 1111,2222

copy_to = 3333,4444

Each of these config group entries is described below:

The “tag” attribute indicates that only the element with tag 0010,0010 (Patients Name) will be

affected.

The “old_value/new_value” pair defines a Perl-style regular-expression type text substitution. In this

example any occurrence of “Smith^Joseph” in the patient name will be changed to “Doe^John”.

The “new_case” attribute is optional and can contain the values “U” or “L”. If the value is “U” the

output value for the element is converted to all upper case; use “L” for lower case. Any other values will

result in the case being unchanged.

The “move_to” attribute is optional and can contain a DICOM tag. The element being modified is

removed from the output data set, and a new element with this tag and the modified value is added.

The “copy_to” attribute is optional and can contain a DICOM tag. A new element with this tag and a

copy of the modified value is added.

More complex regular expressions may be provided – for example, the following combination will swap

the first and second name components, that is, “John^Doe” will become “Doe^John”.

old_value = ([^\^]+)\^([^\^]+)

new_value = $2^$1

The filters that you use have the capability to record the changes made in the Original Attributes

Sequence (OAS). This can be used to create a “history” of the changes to the data resulting from the

filtering of the data – the sequence will have the original values of the elements that were changed.

How to enable this feature will be described below.

5.1. Sample configuration for the DicomElementFilter class.

[filter_1]

filter_class_name = LaurelBridge.DCS.DicomElementFilter

filter_type = DICOM_ELEMENT_FILTER

Page 216 Appendix D: Using DCF Dicom Filters

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

[filter_1/elements_to_match]

0010,0010 = Public^Jane^Q

[filter_1/elements_to_remove]

tag = 0028,0010

[filter_1/elements_to_replace]

0010,0010 = Doe^John

5.2. Other Filter Types

The DCF includes additional built-in filters besides the DICOM Element Filter. The Pixel Value Shift

Filter can be used to shift the bits in pixel data values left or right, for image data manipulation. (This

filter is primarily used in unit/integration tests for data-set and DIMSE-message filtering, but it is also

available for real world image data manipulation.) The Planar Configuration Convert Filter is used

to convert color pixel data from interleaved to planar or vice versa. The Mapping List Filter is a

specialized and more advanced way to add or replace elements in a DICOM message. It provides an

efficient way to match a large number of possible values for a particular attribute (key tag), and then

add/replace one or more elements, depending on the key tag values that are matched. The configuration

attributes for these will be described below. The Pad Value Filter is used to pad a string value with a

character until the string is a given length. The Element Composer Filter is used to create output

elements from fixed text and text that is parsed out of one or more input elements.

5.3. Filter Configuration Files

The DCF stores configuration data, including filter specifications, in text “config files” (see Section 9.1

Configuration Files and the CDS interface above for more detail). It will be easiest to understand how

to define a filter in a config file by showing a fairly complete example of such a file.

[more_examples 1]

filter_type = DICOM_ELEMENT_FILTER

filter_sub_type = unknown

create_original_attributes_seq = TRUE

source_of_previous_values =

source_of_previous_values_tag_name =

reason_for_modification = COERCE

modifying_system = MyDCFBasedSystem

save_pixels_in_oas = FALSE

[more_examples 1/elements_to_match]

0010,0010 = Doe^John

[more_examples 1/elements_to_copy]

tag = 1111,1111

[more_examples 1/elements_to_remove]

tag = 1234,4321

[more_examples 1/elements_to_remove_if_null]

tag = 5678,9123

[more_examples 1/elements_to_replace]

0010,0010 = Bob

[more_examples 1/elements_to_modify]

[more_examples 2]

filter_type = DICOM_ELEMENT_FILTER

filter_sub_type = copy filter

create_original_attributes_seq = TRUE

source_of_previous_values =

source_of_previous_values_tag_name =

reason_for_modification = COERCE

Appendix D: Using DCF Dicom Filters Page 217

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

modifying_system = MyDCFBasedSystem

save_pixels_in_oas = FALSE

[more_examples 2/elements_to_match]

[more_examples 2/elements_to_copy]

tag = 0051,0051

tag = 0051,0052

[more_examples 3]

filter_type = DICOM_ELEMENT_FILTER

filter_sub_type = remove filter

create_original_attributes_seq = TRUE

source_of_previous_values =

source_of_previous_values_tag_name =

reason_for_modification = COERCE

modifying_system = MyDCFBasedSystem

save_pixels_in_oas = FALSE

[more_examples 3/elements_to_match]

[more_examples 3/elements_to_remove]

tag = 1111,2222

[more_examples 3/elements_to_remove_if_null]

tag = 1111,3333

[more_examples 4]

filter_type = DICOM_ELEMENT_FILTER

filter_sub_type = add/replace filter

create_original_attributes_seq = TRUE

source_of_previous_values =

source_of_previous_values_tag_name =

reason_for_modification = COERCE

modifying_system = MyDCFBasedSystem

save_pixels_in_oas = FALSE

[more_examples 4/elements_to_match]

0010,0010 = Doe^Jane

[more_examples 4/elements_to_replace]

0010,0010 = Public^Jane^Q

[modify_filter_1]

filter_type = DICOM_ELEMENT_FILTER

filter_sub_type = modify filter

create_original_attributes_seq = TRUE

source_of_previous_values =

source_of_previous_values_tag_name =

reason_for_modification = COERCE

modifying_system = MyDCFBasedSystem

save_pixels_in_oas = FALSE

[modify_filter_1/elements_to_match]

[modify_filter_1/elements_to_modify]

[modify_filter_1/elements_to_modify/0]

tag = 0010,0010

old_value = (.*)

new_value = $1

new_case = N/C

move_to = 1234,5678

[modify_filter_1/elements_to_modify/1]

tag = 0010,0011

old_value = (.*)

new_value = $1

new_case = N/C

Page 218 Appendix D: Using DCF Dicom Filters

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

copy_to = 8765,4321

The file shows a set of filters; each of the top-level groups (indicated by square brackets) in the file is

an individual filter – “more_examples 1”, “more_examples 2”, “modify_filter_1”, etc. Filters are often

grouped into sets for the convenience of chaining related operations together into one file, although you

could put each filter into its own file and process the data through each one individually. The filters in

a set are processed in order, with the results of each filter being used by the succeeding filters. (Note:

the names of the filters are not important; the filters are processed in the order that they are specified in

the file.)

At the top of each filter definition you can see the attribute-value pairs specifying that the original

attribute sequence should be created and populated with the changes made by each filter.

• create_original_attributes_seq – TRUE (or 1) to enable the OAS; FALSE or 0 disable

• save_pixels_in_oas – TRUE (or 1) if changes to the pixel data should be recorded in the

OAS

• source_of_previous_values – you can specify the source of previous values

• source_of_previous_values_tag_name – the name of the DICOM tag to read for the source of

the previous values. For example, setting this to “1234,5678” indicates that tag 1234,5678 will

be read to get the value of the source.

• reason_for_modification – defaults to COERCE, but you can set it to the other valid values

• modifying_system – the system that is changing the data

If you don’t want the changes made by some filters to be recorded, set “create_original_attributes_seq”

to FALSE for those filters. This allows you to record the changes for some filters but not for others.

(These attributes can be set programmatically via the CFGGroup method setAttributeValue.)

Note on the Original Attributes Sequence: You can specify directly the source of the previous

values by setting the attribute “source_of_previous_values”. If you specify

“source_of_previous_values_tag_name”, then its value will be read to determine the

source. If “…tag_name” is not specified, then the value of the “…values” attribute is used. If the

“…tag_name” attribute is specified but that tag does not exist in the original dataset, a blank value

will be used to indicate that the appropriate value is unknown.

For each filter, the filter_type attribute is required; this tells the DCF what filter code to use. The

filter_sub_type is not necessary – this is used by DCF GUIs to simplify the displays for users.

Each filter must then specify the necessary sub-groups (e.g.,

[more_examples 1/elements_to_match]) that tell the filter what to do: elements that must be

matched in order for the filter to work, which elements should be copied, which should be removed,

which ones modified and how they are modified, etc. If the sub-group is empty, it can optionally be

omitted without affecting the filter’s operation. (For example, note that “more_examples 2” only has

“elements to match” and “elements to copy”; it doesn’t need “elements to remove” or the other possible

operations.)

For elements to match, you must specify the tags and their values that must be matched for the filter to

be applied. If this is empty, the filter is always applied.

Note: Elements to Match is usually used to make sure that a filter is applied if a certain value is

present in a certain tag in the DICOM dataset to be filtered. But sometimes you may want to

filter the data if a tag simply exists in the dataset, regardless of the value it has.

Appendix D: Using DCF Dicom Filters Page 219

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Currently, for string VRs (such as PN, AE, CS, LO, SH, ST, LT, and UT) you can specify the

value in Elements to Match as an asterisk (“*”) to check if the tag exists. Note that this only

works for string VRs. To check if a tag exists for date/time VRs (DA, DT, TM), you would

need to specify a range of dates or times that would match anything, e.g.,

 DA = 19000101-20200101.

(Future releases of the DCF will include a more generic way to check if a tag exists, including a

way that applies to binary and UI VRs.)

For elements to copy, remove, and remove if null, specify the tags that the operation should apply to;

note that the format is “tag = value”, for each tag that is required.

For elements to add/replace (the filter operation name is “elements_to_replace”), you specify the tag

and the tag’s new value; if the tag does not exist, it will be created with the new value.

For elements to modify, each element to modify is specified in another subgroup

(“modify_filter_1/elements_to_modify/0”, “modify_filter_1/elements_to_modify/1”, etc).

Each subgroup (0, 1, 2,…) indicates a tag and how the data in that tag should be modified.

• old_value – a regular expression to parse the data

• new_value – how the data should be rearranged or modified from the regex

• new_case – U for uppercase, L for lower-case, N/C to leave the case as-is

• move_to – move the data from this tag to the new tag

• copy_to – copy the data from this tag to the new tag

The Modify filter uses Perl-style regular expressions for its regex syntax.

To create a Pixel Value Shift Bits Filter, the filter definition should look like this:

[pixel filter]

filter_type = DICOM_PIXEL_VALUE_SHIFT_FILTER

[pixel filter/elements_to_match]

[pixel filter/pixel_shift]

shift_bits = 2

The shift bits determines how many bits to left-shift each byte or word (16-bit) sample in OB or OW

pixel data values; negative values indicate a right shift.

Note that “elements to match” can be specified to determine if the filter should be applied. Also note

that the shift_bits attribute is in the pixel_shift subgroup. (The OAS attributes have been omitted

here for clarity; if needed, they would be inserted directly beneath the filter_type attribute.)

To create a Mapping List Filter, specify a filter definition like this:

[mapping list]

filter_type = DICOM_MAPPING_LIST_FILTER

match_tag = 0008,0050

replace_tag = 0020,000D

replace_tag = 0010,0010

mapping_cfg_name = /tmp/bob

no_match_option = 0

mapping_cfg_format = CSV

mapping_cfg_delimiter_char = ","

create_original_attributes_seq = FALSE

[mapping list/elements_to_match]

Page 220 Appendix D: Using DCF Dicom Filters

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

The match_tags act like a key to a hash of changes that should be made, based on those values; the

replace_tags indicate what tags should have their values replaced. mapping_cfg_name specifies the

full path of the file of mappings to search; mapping_cfg_format indicates the format of that file

(which must be CSV), and mapping_cfg_delimiter_char specifies the data delimiter character in the

file. no_match_option tells the filter what to do if the match tag’s value cannot be found in the

mapping file. (Note that in this example filter, the OAS is turned off.)

The Mapping List Filter is a complicated filter, so it deserves a little more explanation here. The

mapping list file is normally a plain text file with comma-separated values corresponding to the “match

tags” and the “replace tag” elements. The values are usually separated by commas, but you can also

use tabs, semi-colons, or other characters. Note that the delimiter character must be enclosed in quotes.

When this filter is applied, the match tags are checked against the “mapping key” values in the mapping

list file. If a match is found, the corresponding replace tag values are used to replace those tag values in

the data set being processed.

For example, let’s say that your “match tag” is 0008,0050 (Accession Number), your “replace tags” are

0020,000D [Study Instance UID] and 0010,0010 [Patient Name] (recall that you can have more than

one), and the data in your mapping list file is:

12345, 1.2.3.4.5, Doe^John

45678, 4.5.6.7.8, Public^Jane^Q

...

The first column in your mapping list file corresponds to the match tag (0008,0050), and the following

ones to the replace tags (0020,000D and 0010,0010).

If the match tag in a dataset passing through the filter has the value “12345”, then the Study Instance

UID would be replaced with “1.2.3.4.5” and the Patient Name with “Doe^John”; if the match tag has

the value “45678”, then the Study Instance UID would be replaced with “4.5.6.7.8” and the Patient

Name with “Public^Jane^Q”, and so on.

When specifying this filter you must also set the behavior when no matching “match tag” is found in

the mapping list file. There are three choices when no match is found:

• 0 – Reject the data set by aborting the association; the data set is not forwarded to the destination.

• 1 – Log a warning message and forward the filtered data set to the destination.

• 2 – Ignore the error and forward the filtered data set to the destination

It is possible to have multiple match tags – in this case, the replacement occurs only if the values of

each of the specified match tags match values in the mapping configuration file. If all of them match,

then the replacement values are used to modify the dataset. If any of them do not match, then the

replacement does not occur; in such a case, the resulting behavior is determined by the

no_match_option.

For example, consider this filter configuration:

 [mapping list]

filter_type = DICOM_MAPPING_LIST_FILTER

match_tag = 0008,0050

match_tag = 0010,0010

replace_tag = 0020,000D

replace_tag = 0010,0010

mapping_cfg_name = /tmp/bob

no_match_option = 0

mapping_cfg_format = CSV

mapping_cfg_delimiter_char = ","

create_original_attributes_seq = FALSE

and its corresponding mapping list file

Appendix D: Using DCF Dicom Filters Page 221

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

MY_ACCESSION_NUMBER_1, JOHN DOE, 1.2.3.4.5, John^Q^Public

MY_ACCESSION_NUMBER_2, JANE WOE, 1.2.3.4.6, Jane^Citizen

• Dataset #1 is to be filtered; it has 0008,0050 (accession number) with a value of

“MY_ACCESSION_NUMBER_1”, and its patient name (0010,0010) is “JOHN DOE”. In this

case, the Study Instance UID (0020,000D) will be set to “1.2.3.4.5” and the patient name will

become “John^Q^Public”.

• Dataset #2 is now to be filtered; its accession number is “MY_ACCESSION_NUMBER_1” and

its patient name is “GARY DOE”. Since one (or more) of its values do not match, the association

will be rejected.

• But suppose dataset #3 has an accession number of “MY_ACCESSION_NUMBER_2” and a

patient name of "JANE WOE". All values will find matches in the mapping configuration, and so

the Study Instance UID will become “1.2.3.4.6” and the patient name will be changed to

“Jane^Citizen”.

Note that you can have as many match tags and as many replace tags as you require. In the mapping

configuration file, the first n values on each line will be used for the mapping values, while the

remaining m values will be the replace values. The order of the values on each line in the mapping file

is important – the first value will be matched against the first specified match tag, the second value will

be matched against the second match tag, and so on. Similarly, the values after the match tags will be

the replacement tags – the first value will be used for the first replacement tag, the second value for the

second replacement tag, and so on. Consider the above example, where the first two values are to be

matched, and the remaining two are the replacement values.

To create a Pad Value Filter, the filter definition should look like this:

[pad value filter]

filter_type = DICOM_PAD_VALUE_FILTER

tag = 0010,0010

pad_left = true

length = 20

pad_character = "0"

[pad value filter/elements_to_match]

The “tag” specifies the DICOM tag in the dataset that should have its value padded. “pad_left” is

true if the value should be padded to its left (with leading characters); set it to false if the value should

be padded to the right (with trailing characters); the default is to pad to the left. “length” is how long

the final string should be – it is not how many pad characters to add. “pad_character” is the

character to pad the value with; it is enclosed in quotation marks to allow for spaces or other whitespace

characters to be used. You may also specify NULL (e.g., “pad_character = NULL”) to indicate that the

value should be padded with the null character. You should be careful when padding a value with

nulls, spaces, or other whitespace characters, since such characters can be stripped off when the value is

sent or written.

Note that “elements to match” can be specified to determine if the filter should be applied. (The OAS

attributes have been omitted here for clarity; if needed, they would be inserted directly beneath the

filter_type attribute.)

To create an Element Composer Filter, the filter definition should look like this:

[composer_filter]

filter_type = DICOM_ELEMENT_COMPOSER_FILTER

Page 222 Appendix D: Using DCF Dicom Filters

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

create_original_attributes_seq = false

save_pixels_in_oas = FALSE

[composer_filter/elements_to_match]

0000,0100 = 1

[composer_filter inputs]

[composer_filter inputs/1]

Accession Number

tag = 0008,0050

regex = (.*)

[composer_filter inputs/2]

Patient ID

tag = 0010,0020

regex = (.*)

[composer_filter outputs]

new_case = N/C

[composer_filter outputs/1]

Accession Number

tag = 0008,0050

value = ${2.1}

[composer_filter outputs/2]

Patient ID

tag = 0010,0020

value = ${1.1}

Here, the Composer is used to swap the Accession Number and the Patient ID for a C-Store-Request.

Regular expressions are used to parse the elements in the inputs group, and the captured values are

recombined in the outputs group to create or replace element values. The case of the output values can

be changed by specifying the new_case attribute – allowed values are “N/C” (no change), “U” (upper),

or “L” (lower).

To create a Planar Configuration Convert Filter, the filter definition should look like this:
[cfg]

filter_type = DICOM_PLANAR_CONFIG_CONVERT_FILTER

[cfg/planar_config]

output_planar_config = 1

The output_planar_config value should be 0 (zero) for interleaved, or set it to 1 (one) for planar.

5.3.1. Specifying a Sequence in a Configuration File

A sequence may be entered in a config group file as a tag by appending it to a numeric tag (the

traditional group-element pair) with a period (“.”). You may also indicate an item in the sequence with

“#” and the sequence item ID, followed by the tag indicating the sequence. There may be multiple

sequences and sequence IDs as part of one “tag”. Examples are shown below:

• Simple tag – 0010,0010

• Tag with sequence – 0080,0100.0008,0060

• Tag with sequence ID and sequence – 0080,0100.#0.0008,0060

• Tag with multiple sequences and IDs – 0080,0100.#1.0080,0100.#0.0008,0060

If no item number is specified, the first item (#0) is assumed. You can also specify the last element in a

sequence by “#L” (upper-case is important!) if you don’t know how many items are in a sequence. If

you are creating new elements, you can specify the next item in the sequence via “#N” (again, case is

important) to append to the sequence. For example: 0080,0100.#L.0010,0010.#N.0008,0060

Appendix D: Using DCF Dicom Filters Page 223

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Please notice that:

• The sequence IDs (e.g., #1) and the tag-value pairs for the sequences are all separated by periods

(“.”).

• The tags for the sequences are simple group-element pairs themselves.

5.3.2. Using Macros to Specify Data

As you use the DCF to filter data, you may encounter situations where the new values that you want are

dynamically changing. For example, you may wish to specify that a tag has the current date and time.

Obviously, you can’t specify the current date and time exactly as a text string, since the date and time

keep changing. Instead, the DCF provides macros to fill in values that are changing.

The DCF provides the following macros for your use:

• ${DATE} – the current date in the format YYYYMMDD, e.g., “20071108” (November 8,

2007)

• ${TIME} – the current time in the format HHmmSS, e.g., “142035” (2:20:35 PM)

• ${DATETIME} – the current date and time in the format YYYYMMDDHHmmSS, e.g.,

“20071108142035”

• ${GMT_TIME} – the current time for Greenwich Mean Time in the format HHmmSS, e.g.,

“182035” (6:20:35 PM GMT/UTC)

• ${GMT_DATETIME} – the current date and time for Greenwich Mean Time in the format

YYYYMMDDHHmmSS, e.g., “20071108182035”

• ${TZ} – the current time zone, e.g., “Eastern Daylight Time”. Note that the full name, not an

abbreviation is returned. (For Linux platforms, “EDT” is returned, not the full name.)

• ${TZOFFSET} – the offset of the current time zone from GMT, e.g., “-0400” for EDT

• ${UID} – generates a new Unique IDentifier

Note that the times specified are in local time unless you use the GMT macros.

You can use these macros to specify the new values for tags just the same way as if you were

specifying the exact text. For example, to change the E_INSTANCE_CREATION_DATE

(0008,0012), you would specify the new value as “${DATE}”. You can also have a value that mixes

text and macros. Let us suppose you wanted to change the username to be “Bob <current time>”; you

would set the new value to be “Bob ${TIME}”, which would give you a result something like “Bob

150721”.

If you wish to specify a value that has a dollar sign (“$”) in it and not have it interpreted as a macro,

you should escape it with a backslash, e.g., “\${UID}”; this would insert the string ${UID} literally in

the value.

These macros greatly increase the flexibility and power of the DCF’s filters and allow you much more

capabilities in how your data is filtered. For example, if you wanted to specify a sequence that has

known information but also dynamic information like the date, you could create a filter to insert the

literal values but also uses the macros to set the date and time.

Page 224 Appendix D: Using DCF Dicom Filters

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

5.4. Example Filters

• Example 1: Replacing a Value

• Example 2: Removing an Element

• Example 3: Modifying an Element’s Value with Regular Expressions

• Example 4: Padding an Element’s Value

5.4.1. Example 1: Replacing a Value

Suppose you have a DICOM data set that has an incorrect value, and you want to use a filter to correct

that value. For example, if the patient name was “Public^Jane^Q” but was supposed to “Doe^John”.

Then you could set up a filter to replace the incorrect value every time it was processed by your

application.

You would create a new Element filter and specify the elements to replace. If you only want to correct

the element when it has the value “Public^Jane^Q”, you would first specify as “elements to match” the

following values:

Tag Value

0010,0010 Public^Jane^Q

If you want to correct the element every time, even when the value is not “Public^Jane^Q” or the

element is not present at all, you would leave this table empty.

Secondly, you would specify the “elements to add/replace”:

Tag Value

0010,0010 Doe^John

5.4.2. Example 2: Removing an Element

If you want to remove a DICOM element from a data set, you would create a new element filter and

specify the “elements to remove”. For example, let us suppose that you always want to remove element

0028,0010 (rows). You would define as “elements to remove” the following values:

Tag 0028,0010

You could configure the filter to be applied under certain conditions – i.e., when an element has a

certain value – by specifying the “elements to match” (as in the previous example); or you would leave

“elements to match” empty to apply the filter all the time.

Appendix D: Using DCF Dicom Filters Page 225

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

5.4.3. Example 3: Modifying an Element’s Value with Regular Expressions

The “elements to modify” portion of the Element Filter is designed to allow you to modify the value of

an element by using a regular expression (or a “regex”, as it is commonly called); the so-called “Modify

Filter” also allows you the option to move or copy one element’s data into other elements.

For example, suppose that your receiving software expects the patient’s name to be in your proprietary

DICOM tag “abcd,abcd”, but you are not getting that tag sent from the modalities. In addition,

suppose that the data has the first name first, instead of the DICOM default of last name first. You could

use the Modify Filter and regular expressions to switch the elements around and move it to the desired

tag.

First, you would specify for “elements to modify” the tag value for the standard DICOM Patient Name

tag:

Tag 0010,0010

Recall that this is part of a sub-group under “elements_to_modify”, in which you would specify the

tag and how the tag’s data should be modified.

Use old_value and new_value to define how the regular expression should modify the data. (An

explanation of regular expression syntax is beyond the scope of this document, but many fine examples

can be easily found on the Internet.) In this case, you would enter the following:

Old value ([^]*)\^([^]*)

New value $2\^$1

Second, to copy the modified result to your private tag as proposed in this example, you would enter

your proprietary tag – “abcd,abcd” – as the value for copy_to. The end result is that the order of the

first name and last name will be swapped, and the data will be copied to your tag.

Your text configuration file would look like this:

[my_filter]

[my_filter/elements_to_modify]

[my_filter/elements_to_modify/0]

tag = 0010,0010

old_value = ([^]*)\^([^]*)

new_value = $2\^$1

new_case = N/C

copy_to = abcd,abcd

5.4.4. Example 4: Padding an Element’s Value

Suppose you want the patient name (tag 0010,0010) to always be at least 20 characters long and have

leading zeroes as part of it. Your filter configuration would look like this:

[my_filter]

filter_type = DICOM_PAD_VALUE_FILTER

tag = 0010,0010

pad_left = true

length = 20

pad_character = "0"

This would result in the value “John^Doe” becoming “000000000000John^Doe”.

Page 226 Appendix D: Using DCF Dicom Filters

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Or suppose you want trailing characters instead of leading. Then set pad_left to false, as shown

below:

[my_filter]

filter_type = DICOM_PAD_VALUE_FILTER

tag = 0010,0010

pad_left = false

length = 20

pad_character = "0"

Then “John^Doe” would become “John^Doe000000000000”, while “John^Philip^Sousa”

would become “John^Philip^Sousa000”, and “John^Jacob^Jingleheimer^Schmidt”

would be unchanged, since its length is more than 20 characters.

6. Developing Custom Filters

The DCF allows you to create your own custom filters in Java and C#, and also to create your own

custom filter editors in Java – these custom filter editors can be used by the Filter Set Editor

application/applet to make it easier for users to create and edit filters. These custom filters can be used

by the DCF by dynamically loading the classes using reflection – no modifications to the DCF or its

interfaces are required. For example, you could create a custom filter that could be used directly by the

Java filter example, ex_jdcf_filter; the filter application does not need any modification – it can

simply load your filter class and use it.

For C++ implementations, dynamic loading of OEM-provided filter implementations (in a user’s

named DLL, for example) is not currently supported. Instead, the OEM can create a custom

DicomFilterFactory subclass to their DCF based C++ application. The comment in

DCS/DicomFilterFactory explains this (excerpted from DicomFilterFactory.h):

DicomInputFilter objects are created by the DicomFilterFactory by the createFilter() method. The

DicomFilterFactory is a singleton that can be extended by an OEM to allow custom filters to be

added to the system.

To create a custom factory, do the following:

class CustomFilterFactory : public DicomFilterFactory

{

 virtual DicomInputFilter* createFilter(DicomInput* p_source, const

LBS::CDS::CFGGroup& cfg)

 {

 if (cfg indicates that this is a custom filter)

 return new MyCustomFilter(p_source, cfg); // inherits from DicomInputFilter

 else

 return DicomFilterFactory::createFilter(p_source, cfg);

 }

}

Note for Java, C# DicomConditionalFilter:

Prior to DCF3.3.50, classes implementing matching logic for DicomConditionalFilters would only

match the on first value of multi-valued string attributes. As of DCF3.3.50, conditional filters now are

able to match multi-valued string attributes.

See the class documentation in Java and C# for more information on the DicomConditionalFilter class.

Appendix D: Using DCF Dicom Filters Page 227

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Additional documentation is available by sending an email to support@laurelbridge.com and requesting

the "DicomConditionalFilter Changes for DCF3.3.50" technote.

6.1. Custom Filters in Java

The files MySpecialFilter.java and MySpecialGUI.java, in the ex_jdcf_filter example

directory, are simple examples of a custom filter and its corresponding editor GUI.

MySpecialFilter is a very simple filter that can be loaded dynamically by DCF Java implementations;

the associated class MySpecialGUI would provide a graphical user interface for configuring

MySpecialFilter. The Filter Set Editor allows you to specify the class name of a custom filter editor

GUI, which is dynamically loaded by the Filter Set Editor – this allows you to edit your custom filters

within the DCF framework and to expand the filtering capabilities beyond what is built into the DCF.

The custom filter to load can be specified with a configuration like this:

[example_filter]

filter_class_name = com.lbs.examples.ex_jdcf_filter.MySpecialFilter

filter_editor_class = com.lbs.examples.ex_jdcf_filter.MySpecialGUI

…

The filter_class_name attribute specifies the Java class to be loaded by the DCF, while the

filter_editor_class attribute specifies the Java class that the Filter Set Editor should load to

permit a user to configure the filter. The filter configuration would also include whatever data is

necessary to define the filter’s operation.

Figure 16: Using a custom filter editor class

To use your custom filter editor GUI in the DCF Filter Set Editor, you would enter the name of the GUI

class when you are adding a new filter to a filter set (see above). The class you specify must be in the

CLASSPATH; for applets (including the Filter Set Editor applet), this means that the class must be

loaded in the JAR file along with the Filter Set Editor’s classes.

For more information, see the documentation for the class com.lbs.DCS.FilterEditorGUI.

Page 228 Appendix D: Using DCF Dicom Filters

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

6.2. Custom Filters in C#

The file MySpecialFilter.cs, in the ex_ndcf_filter example directory, is a simple example of a

custom filter. (Currently, the C# DCF does not provide any graphical user interfaces for editing filters.)

It can be loaded dynamically by DCF C# implementations, allowing you to extend the DCF’s filtering

capabilities as you desire.

The custom filter to load can be specified with a configuration like this:

[example_filter]

filter_class_name = LaurelBridge.ex_ndcf_filter.MySpecialFilter

filter_assembly_name = ex_ndcf_filter.exe

…

The filter_class_name attribute specifies the C# class to be loaded by the DCF; the

filter_assembly_name specifies the assembly that has the class in it – the assembly is loaded first,

and the filter class is loaded from it. The filter configuration would also include whatever data is

necessary to define the filter’s operation.

Appendix E: DCF MakeUID Function Page 229

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Appendix E: DCF MakeUID Function

The class DicomDataDictionary in DCF handles generating DICOM UID’s. The method makeUID() will

return a unique identifier string.

Note: This function is in DicomDataDictionary, since customizing the UID generation algorithm is in

some ways similar to customizing the data-dictionary to add new tags, etc. This means UID generation

can be done using the DCF code, with custom OEM configuration data, or the OEM can install a new

implementation of the DicomDataDictionary class.

The DCF DicomDataDictionary searches the file $DCF_CFG/dicom/uid for the attributes

oem_info/uid_prefix and oem_info/uid_system_prefix.

1. Description of the DCF makeUID function

Implementation: makeUID returns the concatenation of the strings returned by getUIDPrefix() and

getUIDSuffix().

i.e., String uid = getUIDPrefix() + “.” + getUIDSuffix();

The UID is checked for validity (illegal characters, length overflow, etc) prior to returning it. The OEM

can provide a custom implementation of getUIDPrefix, getUIDSuffix, initUIDPrefix, or the DCF

default implementation can be used: The DCF implementation is described below.

In summary, if you use the default DCF algorithm, you get:

<1.2.840.114089.1.0.1 or cfg-setting>. <ip-addr or cfg-setting>.<time-

stamp>.<pid>.<incrementing_sequence_number>

Note: Calls to makeUID are thread safe, i.e. two threads in the same process calling at nearly the same

time will not get duplicate UIDs.

2. The function getUIDPrefix() returns the uid_prefix.

The uid_prefix is initialized once for a process by initUIDPrefix, which does the following:

uid_prefix = uid-base + system_prefix + time_stamp

• uid_base is either read from the attribute “oem_info/uid_prefix” in the configuration file

$DCF_CFG/dicom/uid, or it is initialized to the DCF default value:
“1.2.840.114089.1.0.1”

Note: the uid_base can be configured, this allows your OEM organization code to appear in UID

prefixes.

• system_prefix is either read from attribute “oem_info/uid_system_prefix” in the configuration file

$DCF_CFG/dicom/uid, or it is initialized to the DCF default:
<base-10-ip-address-of-localhost>

Note: system_prefix can be configured, which is particularly useful if the localhost does not have a

unique IP address - e.g., your network is using NAT or “Masquerading”, or there is no network.

• time_stamp is the result of calling the time() in C++ (or getCurrentTimeMillis()/1000

in Java), that is, it equals the: <time in seconds that the UID generator was initialized in the current

process>

Page 230 Appendix E: DCF MakeUID Function

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

3. The function getUIDSuffix() returns a new UID suffix each
time it is called.

The default implementation does: uid_suffix = pid + sequence_number

• pid is the process id of the calling process - for C++ this is retrieved for each UID, in the event that

fork() was called, and the UID prefix (like all other static/global data) is shared by multiple

processes.

• sequence_number is an unsigned 32 bit integer that starts at 1, and is incremented after each call to

getUIDSuffix().

Note: If you generate 2**32 UID’s, getUIDSuffix() will detect the sequence_number wrap, and will

throw an exception. In this case, makeUID() will re-initialize the uid-prefix (with a new time-

stamp), and will re-call getUIDSuffix() which will re-start the sequence-numbers.

Appendix F: Using Nunit tests with DCF .NET Applications Page 231

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Appendix F: Using Nunit tests with DCF .NET Applications

What Is NUnit?: NUnit is a unit-testing framework for all Microsoft .Net languages, written entirely

in C#; NUnit brings xUnit capabilities to all .NET languages. (See http://www.nunit.org and the next

page for additional information.)

1. Example NUnit test class

Listed below is a sample test class that illustrates the use of NUnit with a DCF related test.

namespace OEM_name

{

 namespace SomeTest

 {

 [TestFixture]

 public class SomeTestClass

 {

 //Use these for shutdown listener test.

 private int phase1 = 0;

 private int phase2 = 0;

 #region Setup and Teardown Functions

 [TestFixtureSetUp]

 public void runBeforeTests()

 {

 InitTest.setup();

 }

…

Here is the InitTest class. This will keep AppControl and other common services from being setup

multiple times.

using System;

using LaurelBridge.DCF;

namespace OEM_name

{

 namespace SomeTest

 {

 public class InitTest

 {

 private static bool isInitialized_ = false;

 public static AppControl apc_;

 public static CFGDB cfgdb_;

 private static string[] args_ = {"-appcfg",

"/apps/defaults/NAppControl_atest"};

 public static void setup()

 {

 if(! isInitialized_)

 {

 try

 {

 LaurelBridge.CDS_a.CFGDB_a.setup(args_);

 cfgdb_ = CFGDB.Instance;

 LaurelBridge.APC_a.AppControl_a.setup(args_, CINFO.Instance);

 apc_ = AppControl.Instance;

 }

 catch (SystemException e)

 {

 System.Console.WriteLine(e);

 }

 isInitialized_ = true;

Page 232 Appendix F: Using Nunit tests with DCF .NET Applications

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

 }

 }

 }

 }

}

2. Some Background on NUnit:

The following notes are excerpted from NUnit’s web site; links to additional information are included

in the text. Please see the NUnit web site (http://www.nunit.org) for the most current information.

What Is NUnit? “NUnit is a unit-testing framework for all .Net languages. The current version, 2.2 is

the fourth major release of this xUnit based unit testing tool for Microsoft .NET. It is written entirely in

C# and has been completely redesigned to take advantage of many .NET language features, for example

custom attributes and other reflection related capabilities. NUnit brings xUnit to all .NET languages.”

See: http://www.nunit.org/index.html .

Permission is granted to anyone to use the NUnit software for any purpose, including commercial

applications, and to alter it and redistribute it freely, subject to certain restrictions. See:

http://www.nunit.org/license.html . Portions Copyright © 2002 James W. Newkirk, Michael C. Two,

Alexei A. Vorontsov or Copyright © 2000-2002 Philip A. Craig.

Getting Started with NUnit. Go to the Download page (http://www.nunit.org/download.html), select a version

of NUnit and download it. The Installation page (http://www.nunit.org/installation.html) contains instructions for

installing on your system.

To get started using NUnit, read the Getting Started document (http://www.nunit.org/files/QuickStart.doc). This

article demonstrates the development process with NUnit in the context of a C# banking application. Check the Samples

page (http://www.nunit.org/samples.html) for additional examples, including some in VB.Net, J# and managed C++.

Which Test Runner to use? NUnit has two different ways to run your tests. The console runner, nunit-console.exe,

(http://www.nunit.org/getStarted.html#console) is the fastest to launch, but is not interactive. The gui runner,

nunit-gui.exe, (http://www.nunit.org/getStarted.html#gui) is a Windows Forms application that allows you to work

selectively with your tests and provides graphical feedback.

…

Please see the NUnit web site (http://www.nunit.org) for additional and the most current information on

this tool.

Appendix F: Using Nunit tests with DCF .NET Applications Page 233

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Appendix G: Using Perl with the DCF

The DCF uses many Perl scripts to simplify and to automate tasks that need to be done in the

development, testing, and deployment of an application. To use these scripts, Perl must be installed on

your system, and the Perl interpreter must be in your PATH. The Windows DCF includes a version of

Perl that can be used if you do not already have Perl installed; most versions of Linux come with Perl

already installed.

On Linux, the “shebang” line – “#!” – at the top of the script is sufficient to run the Perl interpreter

without explicitly invoking it on the command line. For example, you can type “dcfmake.pl” instead

of “perl dcfmake.pl”.

On Windows, you need to call the Perl interpreter explicitly – e.g., perl –S dcfstop.pl – unless there

is a Windows file association between the .pl file extension and the Perl interpreter. If the file

association exists, you may call dcfstop.pl and other Perl scripts just by using their names, without

invoking the Perl interpreter, e.g., dcfstop.pl.

If you do not have a Perl file association, the Perl interpreter looks for the script to run in the current

directory. You may also specify the script’s path explicitly – e.g., perl /home/mydir/myscript.pl –

or specify the “-S” flag to find the script in the PATH, e.g., perl –S dcfstop.pl

To create a Perl file association on Windows, enter the following commands in a DOS prompt, such as

the DCF Command Prompt:

• assoc .pl=Perl

• ftype Perl=<path to perl interpreter> “%1” %*

o Example: ftype Perl=”C:\Program Files\DCF-3.1.1a\perl\bin\perl.exe”
“%1” %*

Note that most of the example invocations of Perl scripts throughout this guide assume that such a file

association exists, or the explicit invocation of Perl is omitted for the sake of simplicity and brevity.

Note that on Windows platforms that in order to do I/O redirection the Perl interpreter must be

explicitly invoked, e.g. “perl –S dcfmake.pl > make.txt 2>&1”

Page 234 Appendix H: Customizing the DCF Remote Service Interface

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Appendix H: Customizing the DCF Remote Service Interface

The DCF’s web-based remote service interface is fully configurable and customizable by the OEM

developer.

Note that you can use different web servers than the DCF’s default choice of using Apache 2.2.16. To

substitute an alternate web server, you must configure your web server to both support the DCF’s CGI

scripts and to serve up its static web pages; see Section 2.4.1.1 for more information.

1. Shortcuts for Setting Debug Flags

Within the DCF there are debugging flags that can be enabled or disabled as desired to alter the

verbosity of the debugging output to the log files. These flags can be accessed via the “Set Debug

Flags” link on the “DCF Home: Operations” page and then selecting the desired application and then

the correct component in the application. This is most useful for a developer, who knows details of the

DCF system, but it can be confusing for an end user, who would not know about all the components

and which ones he needed to choose to get more information.

To meet this need, a utility has been provided that can display shortcuts to the debug flag attributes of a

component and can modify those flags. It is called “sdfgroup_cgi”, so-named because one of its

functions it to set debug flags in groups.

This CGI parses the data in a CFGGroup to determine what debugging shortcuts exist. Each shortcut is

a CFGGroup with attributes giving information about some debugging flags to modify. Each shortcut

group can have any name, but the set of shortcut groups must be in a CFGGroup named

debug_shortcuts. (The names of the shortcut groups must be unique within the debug_shortcuts

group – no duplicate names are allowed.) The debug_shortcuts group can be in a CFGGroup with any

name; usually this is a file with a collection of related debug flag shortcuts. The name of this file (or

CFGGroup) is passed as an argument to the CGI, allowing for different debug shortcut configuration

files for different circumstances. The data is parsed to produce an HTML form of checkboxes, one for

each shortcut group; they are displayed in the order that they are present in the debug_shortcuts group.

At the bottom of the form that is produced is a checkbox for saving the updated debugs flags in the

application’s configuration data, for the next time the application is started.

The CGI takes two arguments on its command line: an action to perform, and the name of the debug

shortcut configuration file to use. Valid actions are “select_debug_flags” and “set_debug_flags”.

Example:

sdfgroup_cgi select_debug_flags /dpa_dbg_shortcut.cfg

sdfgroup_cgi set_debug_flags /dpa_dbg_shortcut.cfg

In a web page, the first one would be written as follows:

http://host/cgi-bin/sdfgroup_cgi.pl?select_debug_flags+/dpa_dbg_shortcut.cfg

If the CGI is being used to set the values of the debug flags, the data is passed to the CGI through its

STDIN. (For HTML viewed in a web browser, this means that the data is passed via the POST

method.)

1.1. Debug Shortcuts

The debugging shortcut groups are organized into a set in a debug_shortcuts CFGGroup. This

containing CFGGroup may have an attribute heading that will be displayed before all the debug values;

Appendix H: Customizing the DCF Remote Service Interface Page 235

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

this attribute is optional. The heading attribute is useful for describing the overall application/process

that will be affected by these debug flags.

Each debug shortcut group has six attributes that must be set.

• app_name – This is the name of the CFGGroup for the application whose debug flags should be

modified.

• proc_name – This is the prefix of the process CFGGroup that is created for an instance of the

application, in the /procs directory. (It is a prefix since the process IDs are appended at runtime to

the actual groups.)

• name – This text is displayed to describe the debug flag shortcut.

• component_name – This is the name of the DCF component of the debug flag.

• component_type – This is the type of the DCF component for the debug flag.

• df_name – This is the actual name of the debug flag that is to be set/unset.

Each shortcut group can also have the optional attribute df_linked_to. This attribute can have multiple

values. If this attribute is set with the name(s) of another shortcut group, when the first group is

selected on the generated web page, the other group(s) will also be selected. This provides a way of

suggesting that certain debug flags should be set when other flags are set, while allowing the user to

disable those flags if they are not desired.

An example shortcut group is shown below:

app_name = /apps/defaults/dcm_switch

proc_name = /procs/dcm_switch

name = Show DICOM Association information

component_name = DCS

component_type = cpp_lib

df_name = df_SHOW_GENERAL_FLOW

df_linked_to = 5

These attributes are put together to determine the complete name of the debug flag to set/unset. Please

note that when the flag is modified, it can be changed in both the application’s configuration file and in

every process instance of the application that is running – you cannot change the flag in one instance of

an application but not another. Checking the “Save these settings for next time” box will change the

debug flags in the application’s configuration data as well as in any matching processes. (The

processes’ debug flags are always changed.) When this group is selected, the shortcut group named “5”

will also be selected.

The above example would load the attribute /components/cpp_lib/DCS/debug_controls/debug_flag,

find the value for the debug flag df_SHOW_GENERAL_FLOW, and modify it in the attribute

/apps/defaults/dcf_switch/cpp_lib/DCS/debug_flags and in

/procs/defaults/dcf_switch.*/cpp_lib/DCS/debug_flags.

Note that it is possible for the df_name value to have multiple debug flags, separated by colons (‘:’).

This allows for multiple flags to be enabled/disabled in one shortcut. One caveat of this is that if a

group sets a flag that was unset by a previous group, the flag will be set.

1.2. Viewing the current settings

Running the CGI with the command “select_debug_flags” will display a page of checkboxes, one

checkbox for each shortcut group. If the flag is set, the box will be checked; it will be empty if the flag

is unset. If multiple flags are in a shortcut group, the box will be checked if any of them are set. If the

flags are set in the application’s default configuration data but not in any of the process instances, the

flags will be marked set. Similarly, if they are set in a process instance but not in the application’s

Page 236 Appendix H: Customizing the DCF Remote Service Interface

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

default configuration data, the flags will be marked set. Basically, if they are set anywhere in a

matching process or application, the flag is marked set – this is to prevent the illusion that they are not

set anywhere.

Clicking a set checkbox will unset the shortcut group and its corresponding flags. Clicking an empty

checkbox will set the shortcut group and its flags. Pressing the “Update” button at the bottom of the

form will submit the new values to be processed. After the data is processed and the new flags are

updated, the results page will show which shortcut groups have been enabled and which were disabled.

2. Example Debug Shortcut File

Below is an example debug shortcut file and its various groups and their flags. Underneath are images

showing the form that a user sees for setting the flags, and then the results. Since none of the boxes

were checked, all the corresponding flags were disabled. (The beginning of each shortcut group has

been highlighted to make it easier to find.) Note that group 5 has multiple flags being affected by one

shortcut, while selecting group 4 will also select groups 1 and 3.

[debug_shortcuts]

heading = DCM Switch

[debug_shortcuts/7]

app_name = /apps/defaults/dcf_switch

proc_name = /procs/dcf_switch

name = Show DICOM Association information

component_name = DCS

component_type = cpp_lib

df_name = df_SHOW_GENERAL_FLOW

[debug_shortcuts/1]

app_name = /apps/defaults/dcf_switch

proc_name = /procs/dcf_switch

name = Show ACSE PDUs

component_name = DCS

component_type = cpp_lib

df_name = df_DUMP_ACSE

[debug_shortcuts/3]

app_name = /apps/defaults/dcf_switch

proc_name = /procs/dcf_switch

name = Show PDU summaries

component_name = DCS

component_type = cpp_lib

df_name = df_DUMP_PDATA

[debug_shortcuts/4]

app_name = /apps/defaults/dcf_switch

proc_name = /procs/dcf_switch

name = Show verbose PDU data

component_name = DCS

component_type = cpp_lib

df_name = df_DUMP_PDATA_VERBOSE

df_linked_to = 1

df_linked_to = 3

[debug_shortcuts/5]

app_name = /apps/defaults/dcf_switch

proc_name = /procs/dcf_switch

name = Show DIMSE reads/writes

component_name = DCS

component_type = cpp_lib

df_name = df_SHOW_DIMSE_READ:df_SHOW_DIMSE_WRITE

Appendix H: Customizing the DCF Remote Service Interface Page 237

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

df_linked_to = 1

[debug_shortcuts/6]

app_name = /apps/defaults/dcf_switch

proc_name = /procs/dcf_switch

name = Show TCP/IP network related debugging

component_name = DCS

component_type = cpp_lib

df_name = df_TCP_NETWORK

df_linked_to = 5

[debug_shortcuts/2]

app_name = /apps/defaults/dcf_switch

proc_name = /procs/dcf_switch

name = Enable ADVT Logging

component_name = DCS

component_type = cpp_lib

df_name = df_LOG_ADVT_FORMAT

Figure 17: Displayed Debug shortcuts.

Page 238 Appendix H: Customizing the DCF Remote Service Interface

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Figure 18: After Clicking the Update button.

3. CDS Configuration Shortcuts

Configuring the DCF, with its many configuration groups and attributes, is not always the simplest of

tasks. There are many attributes that may need to be modified, and often it would be useful to set many

attributes on one page rather than navigating through the CDS tree to each attribute and modifying them

individually. To this end the CGI script cds_cgi has been provided. It parses a configuration group of

CDS shortcuts – these are shortcuts to the attributes to be modified – and displays the attributes

specified in an HTML form for modification. The CGI also parses the results of the form to update the

attributes in the CDS database.

The CGI parses the data in a CFGGroup to determine what the shortcuts are and how to display them.

The shortcut groups must be in a CFGGroup with the name cds_shortcuts. The cds_shortcuts group

can be in a group with any name; usually this is a file with a collection of related attributes that should

be configured at the same time. The name of the file (or containing CFGGroup) can be passed as an

argument to the CGI, allowing for different shortcut configuration files to produce different HTML

pages.

The CGI takes two arguments on its command line: an action to perform, and the name of the shortcut

configuration file to use. Valid actions are “view_attributes” and “set_attributes”.

Example:

cds_cgi view_attributes /dpa_config.cfg

cds_cgi set_attributes /dpa_config.cfg

If the CGI is being used to set the values of attributes, the data is passed to the CGI through its STDIN.

(For HTML viewed in a web browser, this means that the data is passed via the POST method.)

3.1. Shortcut Attributes

CDS shortcut groups can have many attributes, with varying effects.

There are two attributes that are mandatory – they are required by all CDS shortcut groups.

Appendix H: Customizing the DCF Remote Service Interface Page 239

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

1. type – This is the type of the shortcut, and determines how the group will be processed and

displayed.

2. desc – This is the text that will be displayed for the shortcut; it describes the shortcut.

Most groups will also require the attribute attribute_name – this is the full path of the CDS attribute to

be retrieved/modified.

As each group is parsed, it will be put into a bulleted list of shortcuts on the generated page. Each

shortcut will be put on the page in the order that it is in the cds_shortcuts group. Each group can have

any name, but the name must be unique in the cds_shortcuts group.

3.1.1. Types of shortcuts

3.1.1.1. title

This type of group is used to display a heading on the page. The description (“desc”) attribute of the

group will be displayed in an <H2> tag. This item will not be bulleted, but it will be indented since it is

contained in the enclosing tag for the list.

 Required attributes: type, desc

 Example:

type = title

desc = DPA Configuration Data

When the data is updated, this will be displayed on the page, but it cannot be modified.

3.1.1.2. html

This type of group is used to display HTML on the page, allowing the user to add some customization

to the display of the page. The text of the HTML to be inserted into the page is contained in the desc

attribute – note that this means that the lines of HTML text must be continued with a backslash (“\”) if

there is more than one line to display. This item will not be bulleted, but it will be indented since it is

contained in the enclosing tag for the list.

 Required attributes: type, desc

 Example:

type = html

desc = <hr>\

 <center></center> \

 <hr>

This example will display the image file world1.gif, centered between two lines.

When the data is updated, this will be displayed on the page, but it cannot be modified.

3.1.1.3. display_only

This type of group retrieves the value of a specified attribute from the CDS database and displays it in

<PRE> tags on the page.

 Required attributes: type, desc, attribute_name

 Example:

type = display_only

desc = DPA TCP port

Page 240 Appendix H: Customizing the DCF Remote Service Interface

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

attribute_name = /apps/defaults/dcf_switch/cpp_lib/DCS/AssociationManager/tcp_port

When the data is updated, this will be displayed on the page, but it cannot be modified.

3.1.1.4. integer or string

The integer and string types are currently handled identically, although it may later be possible to

handle them differently. These groups must specify the attribute_name to retrieve/modify. These also

have the additional attribute of multiplicity, indicating if the attribute can have multiple values or not –

the possible multiplicity values are “single” and “multiple”. The data from these types will be

displayed in a single-line text field or in a multiple-line text area, depending on the multiplicity value.

If the multiplicity is single, the attribute width must also be specified – this will be the width of the text

field displaying the value. If the multiplicity is multiple, the attributes width and height must be

specified – these are the columns and rows of the text area displaying the value.

 Required attributes:

 type, desc, attribute_name, multiplicity, width

– or –

 type, desc, attribute_name, multiplicity, width, height

 Example:

type = integer

desc = DPA TCP port

attribute_name = /apps/defaults/dcf_switch/cpp_lib/DCS/AssociationManager/tcp_port

multiplicity = single

width = 5

3.1.1.5. boolean

This type will display a checkbox to simplify enabling/disabling the attribute. This type also requires

the attributes on_value and off_value – these are used to determine if the checkbox should be checked

when the value is displayed, and what the value should be set to when the box is changed. (A Boolean

value cannot have multiple values, so multiplicity is ignored.)

 Required attributes: type, desc, attribute_name, on_value, off_value

 Example:

attribute_name = /apps/defaults/dcf_switch/cpp_app/dcf_switch/enable_statistics

type = boolean

desc = Enable statistics

on_value = yes

off_value = no

3.1.2. Optional attributes:

Each group may also have the optional attribute read_only. If this attribute is present and has the value

“true”, then the shortcut will be displayed normally (i.e., with a checkbox or text field), but the input for

the attribute will be disabled in the browser window and the data cannot be modified. (If the browser

does not recognize the disabling of the input [as older browsers may do], the data will be ignored and

not updated when the form is processed.)

Appendix H: Customizing the DCF Remote Service Interface Page 241

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

3.1.3. Synchronizing attributes:

There may be times when you want several CFGDB attributes to have the same value but you don’t

want to have to set each one manually – you want to set one attribute and have the rest get the same

value. This can be done by adding the optional attribute sync_attributes to the group. This can be a

multi-valued attribute, whose values are the complete names of the attributes to keep in sync with the

primary attribute (attribute_name above).

Consider this example:

type = integer

desc = DPA TCP port

attribute_name = /apps/defaults/dcf_switch/cpp_lib/DCS/AssociationManager/tcp_port

multiplicity = single

width = 5

sync_attributes = /apps/defaults/dcf_echo_scp/cpp_lib/DCS/AssociationManager/tcp_port

sync_attributes = /components/cpp_lib/DCS/DCS/AssociationManager/tcp_port

This will cause both CFGDB attributes specified by sync_attributes to get the same value as the

primary attribute – if the main one is set to 20000, those two will also be set to 20000 at the same time.

If you are setting a Boolean attribute, you have additional options that you can specify: sync_on_value

and sync_off_value. If the Boolean attribute is set, then the sync_on_value is used for any

sync_attributes specified; if the Boolean attribute is unset, then the sync_off_value will be

used. If either of sync_on_value or sync_off_value is unspecified, then the

sync_attributes will get the same value as the primary attribute.

Consider this example:

attribute name = /apps/defaults/dcf_switch/cpp_app/dcf_switch/enable_statistics

type = boolean

desc = Enable statistics

on_value = yes

off_value = no

sync_attributes = /apps/dcf_switch/dcf_switch/cpp_app/dcf_switch/enable_statistics

Since sync_on_value and sync_off_value are not specified, the sync_attributes will be

turned on and off exactly the same as the primary attribute.

Consider another example:

attribute_name = /apps/defaults/dcf_switch/cpp_app/dcf_switch/enable_statistics

type = boolean

desc = Enable statistics

on_value = yes

off_value = no

sync_attributes = /apps/dcf_switch/dcf_switch/cpp_app/dcf_switch/enable_statistics

sync_on_value = false

sync_off_value = true

In this case, the sync_attributes will be set to “false” when the primary attribute is set to “yes”,

or to “true” when the primary is set to “no”. Any values can be used – the values for the

sync_attributes could be “1” and “5”, “Peter” and “Mary”, or whatever you desire, set in sync

with the primary attribute. This capability also allows you to toggle settings together – as you can see

in this example, one attribute is set to a positive value when the other is negative, and vice versa.

Page 242 Appendix H: Customizing the DCF Remote Service Interface

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

3.2. Automatic Shortcut Generation

While there are situations in which a custom-generated shortcut configuration file is good and

necessary, there are many situations in which the attributes to be configured are very similar from one

startup instance to another. Such is the case with the set of servers that are started up by the DCF’s

startup scripts. Depending on what configuration is started, certain processes are started and should be

configured. Rather than require a custom shortcut file be written for each startup configuration, a Perl

module (DCFGenStartCfg.pm) is available to write the shortcut file as the system is being started.

The module parses the startup configuration and determines what servers are being started and

automatically generates a shortcut configuration file for that startup configuration.

There are nine attributes that are commonly set in each server that is started, and these are put in the

shortcut configuration file.

1. TCP port – cpp_lib/DCS/AssociationManager/tcp_port

2. Server host address – cpp_lib/DCS/AssociationManager/server_host_address

3. Maximum number of associations –

cpp_lib/DCS/AssociationManager/max_concurrent_associations

4. Association idle timeout – cpp_lib/DCS/association/association_idle_timeout_seconds

5. First PDU read timeout – cpp_lib/DCS/AssociationManager/first_pdu_read_timeout

6. PDU read timeout – cpp_lib/DCS/association/pdu_read_timeout

7. Maximum PDU receive length – cpp_lib/DCS/association/max_pdu_receive_length

8. Max num of log files – java-or-cpp_lib/LOG_a/outputs/file_output_1/max_files

9. Max size per log file – java-or-cpp_lib/LOG_a/outputs/file_output_1/max_size

This list is easily viewed at the top of DCFGenStartCfg.pm should the list need to be changed. Each

server is also given a title attribute within the shortcut file, to clearly indicate what server is being

configured by each set of attributes.

As the startup configuration is parsed, the application configuration group for each server is

determined, and shortcuts are set up for the common attributes in that appconfig. If an attribute does

not exist, the shortcut is omitted.

Some servers may have attributes that need to be set but that are not part of the common nine listed

above. In this case, special parameters may be set up in the server’s per-instance application

configuration group describing these attributes; these are listed as multiple values of the

“special_params” attribute. For example, special parameters for the DLOG_Server, using its default

appconfig, would be in the configuration attribute

/apps/defaults/DLOG_Server/java_app/DLOG_Server/special_params.

Each value should be a semi-colon separated list of items describing the desired shortcut, in this order:
type, description, subgroup, attribute_name, multiplicity, width, height,

on_value, off_value, read_only. Subgroup and attribute_name are combined by the module

to create the complete name of the attribute to be configured; the values of the other fields are as

described earlier in this document. If a field is not applicable to a certain shortcut type, it may be

omitted and will be ignored, but its place should be indicated by the semi-colon separator.

Appendix H: Customizing the DCF Remote Service Interface Page 243

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Example:

special_params = integer;TCP Port;

java_app/DLOG_Server/output_configuration_info;

server_port_number;single;6;;;;

(Note: All of this text would be on one line.)

In addition, each server group in the startup configuration file may have special parameters that should

be configured for that specific startup configuration. This is indicated via the special_params attribute

in the server’s startup group. The format is the same as for the other special_params attribute, except

that this one has the name of the appconfig to use at the beginning.

Example:

special_params = /apps/defaults/DCDS_Server;boolean;

Enable upward notifications;java_app/DCDS_Server;

enable_upward_notifications;single;;;YES;NO;true

The shortcut configuration file is generated upon startup of the system, and a link is provided on the

DCF Operations page to configure the servers via this shortcut file.

3.3. Example shortcut configuration file:

The results of using this shortcut configuration file are shown below.

[cds_shortcuts]

[cds_shortcuts/title_1]

type = title

desc = DPA Configuration Data

[cds_shortcuts/0]

attribute_name = /apps/defaults/dcf_switch/cpp_lib/DCS/AssociationManager/tcp_port

type = display_only

desc = DPA TCP port

[cds_shortcuts/1]

attribute_name = /apps/defaults/dcf_switch/cpp_lib/DCS/AssociationManager/tcp_port

multiplicity = single

type = integer

desc = DPA TCP port

width = 5

[cds_shortcuts/2]

attribute_name = /apps/defaults/dcf_switch/cpp_lib/LOG_a/use_log_server

type = boolean

read_only = true

desc = DPA connects to DLOG_Server

on_value = true

off_value = false

[cds_shortcuts/3a]

attribute_name = /test2.cfg/required_components/component

type = display_only

desc = test2.cfg required component list

[cds_shortcuts/3]

attribute_name = /test2.cfg/required_components/component

multiplicity = multiple

type = string

read_only = true

desc = Required components for test2.cfg

width = 40

height = 5

[cds_shortcuts/log_server_flag]

attribute_name = /apps/defaults/dcf_switch/cpp_lib/LOG_a/use_log_server

multiplicity = single

type = string

desc = Log server flag as string

width = 7

[cds_shortcuts/title_2]

Page 244 Appendix H: Customizing the DCF Remote Service Interface

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

type = title

desc = Echo server

[cds_shortcuts/html_1]

type = html

desc = <hr> \

<center></center> \

<hr>

[cds_shortcuts/echo_server_mode]

attribute_name = /apps/dcf_switch/dcf_echo_scp/cpp_app/dcf_echo_scp/one_shot_mode

type = boolean

desc = Echo server one-shot mode

on_value = yes

off_value = no

[cds_shortcuts/continued_line_test]

desc = line with continuation characters

attribute_name =

/test3.cfg/testapp/another_group/level3/level4/level5/level6/level7/level8/level9/attr1

type = string

multiplicity = single

width = 60

Appendix H: Customizing the DCF Remote Service Interface Page 245

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Figure 19: Display results of applying a shortcut configuration file.

4. Authenticating Access to DCF Web Pages

As you develop and use the DCF and its web pages, you will realize how powerful the web interface is

and how easy it could be for an untrained user to change its settings and disrupt the operation of the

DCF and your application. During development of your application, this may be less of a concern, but

it could be an issue in the field once your application is deployed, if it is deployed with a web interface.

In such situations, you might want to configure the DCF’s web server to require users to “log in” before

being able to access the web pages. This would restrict access to only those users that have the

Page 246 Appendix H: Customizing the DCF Remote Service Interface

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

appropriate permissions; it is also possible to configure the access restrictions so that some users could

access certain sections but not other sections.

The steps described below will allow you to require authentication to access the DCF’s web pages.

(Please note that the steps described have been tested for Apache 1.3.33 and 2.2.16; if you are using a

different web server, the steps will be similar but not identical.)

Steps to require authentication to access DCF web pages:

1. Create the password file.

This is done via the htpasswd utility, provided by Apache when you installed it.

To see the usage, at a command prompt type:

htpasswd

You must create the password file to use if it does not already exist. From outside the httpd docs

tree (for example, at DCF_ROOT), run

htpasswd -c %DCF_ROOT%\dcf_passwords <username>

This will create the password file “dcf_passwords”. (The file should be created outside the web

server root so that it is not accidentally served up by the web server.)

You will be prompted for a password for the user, and required to type it twice. Once the password

file exists, you should omit the “-c” flag. (The “-c” flag is only for creating the file the first time; if

you use it and the file exists, then you will create a new file, overwriting the existing one, and you

will lose any user info in the original file.)

For subsequent users that need to be added or to change the passwords of existing users, run the

command

htpasswd %DCF_ROOT%\dcf_passwords <username>

(Note that the “-c” option is not used.)

2. Configure Apache to use the file for authenticating users.

Create an “.htaccess” file in the directory you wish to protect. If you wish to require

authentication for all DCF web pages, you might put an .htaccess file in both the

%DCF_ROOT%/httpd/html and %DCF_ROOT%/httpd/cgi-bin directories.

The contents of the file would look something like this:

AuthType Basic

AuthName "Access restricted to authorized DCF users"

AuthUserFile %DCF_ROOT%/dcf_passwords

Require valid-user

This specifies that authentication is required and that the dcf_passwords file should be checked

for the authorized usernames and passwords. Note that you can change the AuthName value to

whatever text you want to be displayed in the password entry dialog box that will pop up when a

user is required to log in. You should specify the complete value for “%DCF_ROOT%”, not just

assuming that Apache will recognize the environment variable, and you may need to enclose the

value in quotes if it has spaces.

3. Modify the httpd.conf file (in %DCF_ROOT%/httpd/conf) to allow the .htaccess file to override

some options.

Appendix H: Customizing the DCF Remote Service Interface Page 247

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

You should do this for each “<Directory>” section in the httpd.conf file that has a directory you

wish to protect. Thus, to require authentication for all DCF web pages, you would modify the

“<Directory>” section in the file that corresponds to %DCF_ROOT%/httpd/html, and change the

value AllowOverride in those sections from “none” to “AuthConfig”.

If you wish to restrict access to the CGI scripts, find the “<Directory>” section for the cgi-bin

directory (%DCF_ROOT%/httpd/cgi-bin) and change AllowOverride from None to AuthConfig.

4. Stop, then restart the Apache server.

From a DCF Command Prompt, run the command

perl kill_apache.pl

This will (obviously) stop the DCF’s Apache web server. Restart the server by running the

command

perl run_apache.pl

For more information about authenticating users and additional measures you can use, see

 http://httpd.apache.org/docs/2.2/howto/auth.html

For example, this page can show you how to configure the Apache web server so that it can be accessed

only from your internal network.

5. Java Applet Issues

Java applets are used to provide part of the functionality of the DCF. They are used for various tasks,

including editing the filter sets and viewing the log output in real-time. These applets provide a simple

interface that can be accessed from anywhere that has web access to the system where the DCF is

installed and running. While you will typically configure the DCF while sitting at the computer where

it is running, you don’t have to: you can configure and control the DCF from any computer with a web

browser that has network access to the DCF’s host.

In order to use the applets, you must have the Java plug-in installed on your system, as well as in the

Web browser you are using. The plug-in is needed because some advanced Java components are used

that may not be part of the default Java VM in some browsers, especially older ones. The Java plug-in

is designed to provide consistency across web browsers. It can be downloaded from Sun’s Java site, at

http://www.java.com as part of the Java Runtime Environment (JRE). Since it is part of the JRE, it may

already be installed if you have that on your system. If you do not have the plug-in installed, when you

try to start an applet all you will probably see is an unchanging gray box with the text “Loading

Java applet”. In this case, please download and install the plug-in; you may need to restart your

browser for this change to take effect.

Browser Note: If you are using a Firefox web browser, as of Firefox 3.6, you must use the Next

Generation Java Plug-in. This comes with Java 6 Update 10 (1.6.0_10) and higher and should be

automatically installed into your browser when the JDK or JRE is installed, although you may need to

enable it in your browser.

Some firewalls (such as the default firewall included with Windows) may warn when a web browser

tries to run one of the DCF’s applets; they may even block the applet from running. If this happens,

http://httpd.apache.org/docs/2.2/howto/auth.html
http://www.java.com/

Page 248 Appendix H: Customizing the DCF Remote Service Interface

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

you should register your browser as an exception with the firewall to unblock access to the

browser/applet and to allow it to function normally.

The Java applets used by the DCF use a signed JAR file. This is due to a known bug in Java’s CORBA

implementation for applets, which causes a security exception to be thrown. (See the Bug IDs in Sun’s

bugs database: 6203567, 5031209) At this time, when a user downloads or runs a DCF applet in their

web browser, the user will be prompted to accept the signed applet from “laurelbridge.com” (see the

example figure below).

Some applets in the DCF may cause you to be prompted to accept the signed applet. Most browsers

will let users view the certificate for the JAR file before accepting it. If the users select “always”, they

won’t be prompted again about accepting applets in that JAR file. Some users may be concerned that

accepting the applets will open up security holes on their system – this is not the case, as the applets

make no changes to the local box.

Note: you may have to add a security exception for “http://<hostname>:8080” via the Java

console Security tab to allow an applet to run on the system.

Figure 20: Example security warning from Firefox for a signed JAR file

Figure 21: Example security warning from Internet Explorer for a signed JAR file

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6203567
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=5031209

Appendix H: Customizing the DCF Remote Service Interface Page 249

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

6. Other Applet Issues

If the applets are not working for you, or maybe they work for you when connecting on one computer

but not from another, there are many possible problems – Java, firewall settings, plug-in issues, etc.

6.1. Enabling Java

If the applets aren’t working for you, one possibility is that Java is disabled in your web browser. You

should re-enable it (you may have to restart your browser) and try them again.

On Firefox, the panel for controlling Java may look like this:

Figure 22: Enabling Java in Firefox

Page 250 Appendix H: Customizing the DCF Remote Service Interface

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

On Internet Explorer, the panel to enable Java may look like this:

Figure 23: Enabling Java in Internet Explorer

A similar issue could be that you have an older version of the Java plug-in, one that does not have the

correct components for running the DCF’s applets. The DCF is designed to run with Java 6 Update 2

(formerly called “1.6.0_02”) or newer (as seen in the above image). If you have an older version, you

should download a newer version from http://www.java.com/ and install it.

6.2. Firewall Issues

Another possibility if the applets are not working for you – especially if you are trying to connect from

a remote box – is that your firewall is configured in such a way that the applets cannot run correctly. (It

is even possible that the firewall may block all communication between the remote applets and the

DCF.) This could include that the firewall is set up to block Java from downloading, or that it needs to

be configured to allow the DCF’s applications (including Java) to run and to communicate, or they

could be blocking communications between the applets and the DCF’s services. While you should not

disable your firewall, you should configure it to allow the DCF and its applications to communicate by

setting them as exceptions. For example, below is a screenshot of what this may look like for the

default Windows Firewall. (Note that the example below shows that the dcf_switch application has

been enabled as an exception but that Java has not yet been enabled.)

http://www.java.com/

Appendix H: Customizing the DCF Remote Service Interface Page 251

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Figure 24: Setting firewall exceptions

6.3. JavaScript Issues

JavaScript must be enabled to use the DCF and its web pages properly. If JavaScript is not enabled in

your browser, you may see error messages like those shown below:

Figure 25: Example JavaScript warning

Each web browser has its own way of enabling and disabling JavaScript, so consult the documentation

and their user manuals for specific information on how to enable JavaScript.

In newer versions Firefox enables JavaScript by default, for older versions of Firefox, select the

“Tools” menu, then the “Options” sub-menu. Select the “Content” tab and click “Enable JavaScript”.

Page 252 Appendix H: Customizing the DCF Remote Service Interface

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Figure 26: Enabling JavaScript in Firefox

For Internet Explorer consulte the documentataion for your current version. For most versions, select

the “Tools” menu and then the “Internet Options” sub-menu. Select the “Security” tab, and then select

the “Local intranet” zone. Click “Custom level…”; find the “Scripting” section near the bottom, and

click “Enable” for “Active scripting”.

Figure 27: Enabling JavaScript in Internet

Explorer

Appendix H: Customizing the DCF Remote Service Interface Page 253

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Alternatively, you can select the “Trusted sites” zone. Click the “Sites button”, and then click “Add” to

add http://<your computer name> to the list of trusted sites. You may wish to check that “Active

scripting” is enabled for the “Trusted sites” zone, following the steps described above for the “Local

intranet” zone.

Figure 28: Adding your computer to the list of trusted sites

Be sure to click “OK” as you close each menu to accept the changes in security preferences.

Page 254 Appendix I: Editing the Extended Data Dictionary

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Appendix I: Editing the Extended Data Dictionary

The DCF allows you to add tags to the data dictionary that it uses – this allows you to specify private

tags or new tags that older versions of the DCF may not have. The DCF provides a web page to make it

easy to add elements to the data dictionary – this usage is described below. You can also edit the data

dictionary via a simple text editor, such as VI, Emacs, or Notepad; this is shown in the image below.

(The default file for the extended data dictionary is $DCF_ROOT/cfg/dicom/ext_data_dictionary.)

Figure 29: Editing the Extended Data Dictionary in GVIM

• To edit the extended data dictionary via the web: In the lower left corner of the DCF’s web

page is “Edit Extended Data Dictionary”. Clicking that will bring you to the web pages for

editing the extended data dictionary. (Only the default one –

$DCF_ROOT/cfg/dicom/ext_data_dictionary – can be edited via this page.)

Appendix I: Editing the Extended Data Dictionary Page 255

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Figure 30: Editing the Extended Data Dictionary

A user can edit it as text by clicking the “Edit as text” link near the top of the page.

Page 256 Appendix I: Editing the Extended Data Dictionary

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Figure 31: Editing the Extended Data Dictionary as text

Or he can add attributes to it via the GUI – expand the top group by clicking on plus sign next to the

slash at the top level, then choose the “elements” group by clicking its name.

Figure 32: Select the “elements” group to add to the data dictionary, and the click “Add”.

Then click the “Add” button (at the far right) that is at the same level as the Elements group. This will

open up a new page where you can add new groups or attributes. For the extended data dictionary, you

want to enter values in the “attribute” boxes – these are highlighted in orange below.

Figure 33: Enter the new values for the data dictionary

Appendix I: Editing the Extended Data Dictionary Page 257

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Enter the appropriate values in the boxes, and click the “Submit” button.

The values to enter: the tags are entered as new attribute names, and then the values for the attributes

are the VR, VM, and a description, separated by commas.

For example: To add tag 0029,1020 to the data dictionary, enter “0029,1020” in the new attribute

name field. In the new values field, enter “CS,1,Example private attribute 1”.

Repeat as necessary for additional tags.

When you are done adding tags to the extended data dictionary, click the “Home” link at the top right

corner to return to the DCF’s home page. You will have to restart any applications that will use the

new values in the extended data dictionary.

Page 258 Appendix J: Product Licensing and Activation

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Appendix J: Product Licensing and Activation

This Appendix contains:

Section 1: Installing a new SDK License (for developers)

Tells you how to install a new toolkit license for the DCF toolkit (SDK) that you are using

for your software development;

Section 2 Activating an SDK License (for developers)

Explains how to activate a toolkit license for the DCF toolkit (SDK);

Section 3: Deploying OEM Applications with an Activatable License

Explains how to deploy an activatable license with the application that you have developed.

The licensing topic is covered for MAC-based licenses in section 13.2, License Key for a Deployed

Application.

1. Installing a new SDK License

A license is normally installed at the time of initial installation of your DCF Toolkit (SDK).

If your existing DICOM Connectivity Framework SDK developer license has expired, you may request a

new one from Laurel Bridge Software. A utility, available from the Windows Start Menu, is used to

install your new SDK license on your system.

Figure 34: Installing a new license

Note, for Linux: Install a new license by copying the key file into the cfg directory as follows:

cp <keyfile> $DCF_ROOT/cfg/systeminfo

Appendix J: Product Licensing and Activation Page 259

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

2. Activating an SDK License

There are two styles of licenses available for the DCF Toolkit – one type works right away; another

type requires activation before the DCF Toolkit applications will work.

If you need to activate your SDK license, you may see a warning message when you first install the

DCF, or you may see a message like the one in green at the bottom of the DCF’s Operations window.

Figure 35: Warning to activate the license

To activate your SDK license, launch the License Activation Utility from the Start menu:

Start → All Programs → DICOM Connectivity Framework → Activate license

The License Activation Utility will let you activate your license in either Network mode or in Manual

mode; each is described below. Note, as mentioned above, some keys do not require activation – in this

case, the utility will warn you of this fact and you can only exit the tool.

Page 260 Appendix J: Product Licensing and Activation

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

2.1. SDK Network Activation Mode

If you have Internet connectivity, it is preferred to activate the DCF Toolkit license via the Network –

you will see a screen like that shown below.

Launch the License Activation Utility from the Windows Start menu:

Start → All Programs → DICOM Connectivity Framework → Activate license

Figure 36: Network mode for activating a license

Fill in each of the fields specified. The Product Serial Number was given to you when you purchased

the DCF, or it can be found on the LBS licensing web site as you view your available SDK license

keys. Note that the fields in blue do not need to be entered by you – the Activation Request Code

(above) is a system identifier that is generated on your computer by the application.

Once all the fields are filled in correctly, press the Activate button. The utility will communicate with

the Laurel Bridge licensing web site and receive an Activation Code and other information back from

the web site. Upon success, the status fields will look something like this:

Figure 37: Activation succeeded via Internet

Appendix J: Product Licensing and Activation Page 261

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

The DCF license should now be activated, allowing the DCF to be fully functional on this system. If

activation failed, you will see error messages explaining why. Resolve the errors if possible and try

activating again.

2.2. SDK Manual Activation Mode

Manual activation is used when the target computer with the DCF Toolkit does not have Internet access

to the Laurel Bridge licensing web site – note that Network Activation is the preferred mode.

Launch the License Activation Utility from the Windows Start menu:

Start → All Programs → DICOM Connectivity Framework → Activate license

After you launch the utility, you should select the Manual tab if it is not already selected.

Figure 38: Manual mode for activating a license

To get the required information to complete the form, you will nee to use a web browser on a different

system that does have Internet access. Do the following:

Page 262 Appendix J: Product Licensing and Activation

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

• Go to https://www.laurelbridge.com/product_activation.php. Alternatively, you can proceed to

the Laurel Bridge Software customer web site at www.laurelbridge.com, select “Support”, and

then choose “Product License Activation”.

• See the screenshot below. Enter the Product Serial Number that was obtained and the Activation

Request Code displayed on the target system by the utility (in the example shown above, it is

“A638-DBCD-B08C-F237”). Also enter the site and contact information, and the number of

CPUs for the system that is being activated.

• Press the Submit button when complete, see the screenshot below.

Figure 39: License activation web page

• After you click Submit, you will see a screen like that below.

https://www.laurelbridge.com/product_activation.php
http://www.laurelbridge.com/

Appendix J: Product Licensing and Activation Page 263

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Figure 40: Web page showing license activation code

• Note the license activation code and enter it onto the License Activation Utility on your target

computer system.

(Alternately, if you wish, you can also click the “download” button to download the key – if you

do this, install the downloaded key using the Install License utility and don’t continue with the

manual activation process.)

After clicking Activate, the utility should display something similar to this:

Figure 41: Successfully activated the license manually

The DCF license should now be activated, allowing the DCF libraries to be fully functional.

Page 264 Appendix J: Product Licensing and Activation

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

3. Deploying OEM Applications with an Activatable License

3.1. Developer Perspective

An OEM user developing software applications with the DCF may want to let their clients (customers)

use activatable DCF license keys. Each OEM user must contact Laurel Bridge to ask for a template,

and Laurel Bridge will supply a template license file for the OEM to distribute with their software. End

Users can then use the activation procedures described below in “User Perspective” to fully activate the

DCF license for their application.

If a template license file is used, then it must be installed in the %DCF_ROOT%/cfg directory and must

be named systeminfo.

The developer typically will want to have the license activation occur as part of the OEM application

installation process. A developer would write an installer that would invoke the License Activation

GUI provided with the DCF. For example, after installing his own software and the required DCF

libraries and binaries, the OEM installer would then invoke the appropriate Activation GUI tool:

java com.lbs.ActivateDcfLicense.ActivateDcfLicense

This will launch the Java GUI, letting the user input the required information and activate the license

either over the Internet (“network” mode) or proceed to activate it manually (as described below under

“manual activation”). Note that there is also a C# version of the tool – nActivateDcfLicense – if you are

shipping a C# application; this document will refer to the Java version for consistency, but the same

options exist with the C# version.

The License Activation GUI will return 0 (zero) if the activation succeeds; any other status means that

the license activation failed. This lets the developer configure his installer so that it can check if the

license was successfully activated.

The developer can also write their own method for activating the license by looking at the source code

for the GUI – the source code can be found in

%DCF_ROOT%/devel/jsrc/com/lbs/ActivateDcfLicense, specifically in the

ActivateDcfLicense.java file – and adapting it accordingly.

The License Activation tool can also be invoked in command line mode if the developer doesn’t want

to write his own activation utility but does have his own GUI look-and-feel. To see the parameters that

are required, from a DCF Command Prompt, run the utility with the –h switch as follows:

java com.lbs.ActivateDcfLicense.ActivateDcfLicense -h

To distribute a license to a client, an authorized person (OEM or Laurel Bridge) will go onto the Laurel

Bridge web site (as shown below) and “reserve” a key (as described in section 3.2.2 below) by filling

out the form’s fields; doing that will generate a product serial number that the OEM will give to their

customer or client. The recipient can then activate the key using the network or manual methods

described below.

Appendix J: Product Licensing and Activation Page 265

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Figure 42: Licensing Web Site Options

3.1.1. Files to Distribute

To use the License Activation Utility, a developer will need to distribute both the utility itself and also

the helper utility dcf_cpu_count.

Note that the utility dcf_cpu_count should be available in the environment so that it can be used by

the License Activation Utility – for example, if dcf_cpu_count is extracted into the

%DCF_ROOT%/bin directory, then that directory should be put into the PATH environment variable.

The License Activation Utility itself is in the LaurelBridge.jar file – this should be included in

your distribution, and its location should be put into the CLASSPATH environment variable.

If you are using the C# version of the Utility, instead of the Java jar file, then you will need the

executable nActivateDcfLicense, typically located in the DCF’s bin directory. The location of

the executable should be put in the PATH environment variable.

To summarize, the files to distribute are:

• LaurelBridge.jar (Java) or nActivateDcfLicense (C#)

• dcf_cpu_count executable

Page 266 Appendix J: Product Licensing and Activation

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

3.2. User Perspective

OEM users of the DCF Toolkit may develop an application that uses the activation model for DCF

licensing. In this mode, the OEM purchases some number of runtime licenses (typically one per

physical CPU that hosts DCF code). Rather than creating licenses for individual machines by providing

a network adapter MAC address and other information, the process in the activation model is divided

into the following three parts.

• Install the un-activated template license (typically distributed along with the application)

• Create and Reserve a license (typically done by LBS via the license web site)

• Activate a license (typically done by the end user at time of the application installation)

3.2.1. Install the un-activated template license

The template license is a license file that is distributed and installed by the OEM along with DCF

library DLLs and other files as part of each customer system or application installation. The DCF

software being distributed or installed will not be fully functional until this template license is activated.

Should an OEM choose this option, the template license will be generated by Laurel Bridge and

provided to the OEM developer upon request. The OEM can distribute this template license with his

software and must provide one or more Product Serial Numbers to his customers/clients so that they

can activate the license(s) during product installation. Typically the template is installed by the OEM

application installer and is unknown to the end-user; the Product Serial Number is provided to the end-

user who enters that number when requested during the application installation process.

3.2.2. Create and Reserve a license

Using the Laurel Bridge Software “Customer Access” web site, an authorized user (typically LBS)

provides contact information and information about the deployment location within the end-user

customer organization for the license. A Product Serial Number is generated and it is ultimately

provided to the end-user customer for each reserved license. The OEM distributes those serial numbers

to the installer/administrator/end-user for the system to be activated. After the “Create” button is

clicked on the Reserve a Key screen, the Product Serial Number for the key will be displayed at the

bottom of the form (below the “Create” button) shown in the following screen shot:

Appendix J: Product Licensing and Activation Page 267

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Figure 43: Reserving a license key

3.2.3. Activate a license

During or after the process of installing the customer application, the DCF license can be activated,

typically this is done by the installer/administrator/end-user for the system to be activated. Two modes

for activation are supported. For systems connected to the Internet and with connectivity to the Laurel

Bridge web server, “Network Activation” is the preferred approach. For systems without such

connectivity, “Manual Activation” can be performed.

Page 268 Appendix J: Product Licensing and Activation

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

3.2.3.1. Network Activation Mode

For systems connected to the Internet and with connectivity to the Laurel Bridge web server, “Network

Activation” is the preferred approach.

Run the license activation tool—the ActivateDcfLicense utility; this is typically done by the OEM’s

installer program. For Java, this tool is a Java application that is invoked with the following command:

java com.lbs.ActivateDcfLicense.ActivateDcfLicense

Once the activation tool graphical user interface comes up, select the “Network Activation” tab, if that

is not currently selected. After providing the necessary information, and clicking the “Activate” button,

the screen should look similar to the following:

Figure 44: Network activation of a license

Note that the fields in blue do not need to be entered by the user. The Activation Request Code is a

system identifier that is generated on the customer computer by the DCF libraries. This Activation

Request Code, as well as the other user supplied fields, is sent to the Laurel Bridge Software license

server. Upon success, the server returns the “Activation Code” and other licensing information – in this

example the code is the string “72EB-22AF-0732-9C95-B0A8-E279-4BEB-D9FF”.

After successful activation, the license file (%DCF_CFG%\systeminfo) will have been modified to

include the activation code. The DCF library software should now be fully functional on the licensed

system.

Appendix J: Product Licensing and Activation Page 269

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

To be able to use the Network Activation model the end user system must have Internet access as

described below in Section 3.3.3, Networking Issues Related to Network Activation.

3.2.3.2. Manual Activation Mode

For systems without Internet connectivity to the Laurel Bridge web server, “Manual Activation” must

be performed.

Run the license activation tool on the target system—the ActivateDcfLicense utility; this is

typically done by the OEM’s installer program. This tool is a Java application that is invoked with the

following command:

java com.lbs.ActivateDcfLicense.ActivateDcfLicense

Once the GUI comes up, select the “Manual Activation” tab; the screen should look similar to the

following:

Figure 45: Manual activation of a license

Note the Activation Request Code shown in the form above (in this example, the string “2230-12A6-

C412-EDEA”). The Activation Request Code is a system identifier code that is generated on the target

computer by the DCF libraries. You will need to record this Code so you can complete the next steps.

Page 270 Appendix J: Product Licensing and Activation

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Using a web browser on a different system, proceed to the Laurel Bridge Software (LBS) product

license activation page. There are several ways to access this page.

• Open http://www.laurelbridge.com, click “Customer Access” at the upper right. From the initial

screen, select “Activate a Product License”. This link is also available on the LBS Support page.

• The license activation page is available directly at:

 https://www.laurelbridge.com/product_activation.php

• For registered users, if you are logged into the license site, there is also a link: “Activate a Product

License” – for an illustration, see Figure 42: Licensing Web Site Options above.

Once at the product license activation page, complete the form: enter the Product Serial Number that

was provided to the customer (this was obtained by the OEM when the license was reserved) and the

Activation Request Code displayed by the ActivateDcfLicense utility during the application

installation. Also enter the site and contact information, and the number of physical CPUs for the

system that is being activated. See the following screenshot example:

Figure 46: License activation web page

After clicking the “Submit” button, a screen similar to the following should be displayed:

http://www.laurelbridge.comc/
https://www.laurelbridge.com/product_activation.php

Appendix J: Product Licensing and Activation Page 271

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Figure 47: Activation Code Display

Because this is the manual process, you must write down the license activation code (in this example,

the string “7F4F-8D66-2449-D250-563F-3D5C-2B82-968E”).

Enter the provided activation code into the ActivateDcfLicense utility form on the system that is

being activated.

After clicking “Activate”, that form should look similar to the following:

Page 272 Appendix J: Product Licensing and Activation

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

Figure 48: Manual activation succeeded

After successful activation, the license file on the target system (%DCF_CFG%\systeminfo) will have

been modified to include the activation code. The DCF software license should now be activated,

allowing DCF-based software on the target system to be fully functional.

Appendix J: Product Licensing and Activation Page 273

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

3.3. Administrative Issues

3.3.1. Reactivating a License

The activation process for a particular license on a particular machine can be repeated at any time if for

some reason the license file (%DCF_CFG%\systeminfo) is damaged or lost. As long as the Product

Serial Number matches a reserved license in the Laurel Bridge license server data base, and the

Activation Request Code describes a system that is sufficiently similar to the system for which the

original activation was performed, the activation process can be repeated.

License reactivation can be done using either the network or manual approach as described in the

instructions above.

3.3.2. Transferring a License

If a customer system is being retired, or the system has been sufficiently modified such that a

previously activated license no longer works, the license may be transferred. The Laurel Bridge

Software customer web site provides instructions and a downloadable form to request transfer of a

license from one system to another.

Once a license has been transferred, it will need to be activated just as if it were a new license. See

activation instructions above.

3.3.3. Networking Issues Related to Network Activation

To use the network activation model, the end user system must have Internet access to the Laurel

Bridge Software license server. This connection is managed by the license activation utility and is

typically called during application installation and the access is invisible to the end user.

The URL accessed is: https://www.laurelbridge.com

The transactions use HTTPS for which the default port is 443.

If an end user’s firewall allows outbound connections using HTTPS, then the license activation utility

should function as planned and intended.

If the required outbound HTTPS connection is not supported, then the Manual Activation process

described above will need to be followed.

Page 274 Appendix J: Product Licensing and Activation

DCF Developers Guide DCF 3.3.68c Copyright 2020, Laurel Bridge Software, Inc. All Rights Reserved v 2.55

- End of Document -

	1. Overview
	1.1. System Architecture Overview
	1.2. An Example DCF Application
	1.3. Components
	1.3.1. Component Classification
	1.3.1.1. DCF Component Categories
	1.3.1.2. DCF Component Physical Types

	1.3.2. Selected DCF Components Organized by Category
	1.3.2.1. Dicom Applications
	1.3.2.2. Non Dicom Applications
	1.3.2.3. Examples
	1.3.2.4. Common Service Interface Libs
	1.3.2.5. Common Service Implementation Libs
	1.3.2.6. Application Support Libs
	1.3.2.7. IDL Interface Libs

	1.4. Platforms
	1.5. Systems

	2. Installing the DCF
	2.1. Multi-user vs. Single-user Installation
	2.2. DCF Shared Files
	2.3. DCF Per-user Files
	2.4. The DCF Remote Service Interface
	2.4.1. Running the Apache Web Server
	2.4.1.1. Alternate Web Servers

	2.4.2. Connecting to the web server
	2.4.3. The DCF Remote Service Interface
	2.4.3.1. Start with … (Choose a configuration)
	2.4.3.2. Shutdown DCF Processes
	2.4.3.3. Clear Log Files
	2.4.3.4. View Log Files
	2.4.3.5. View DCF Real-Time Log
	2.4.3.6. View/Edit Configuration Files
	2.4.3.7. View DCF Online Documentation
	2.4.3.8. Set Debug Flags
	2.4.3.9. Configure [DCF system config name]
	2.4.3.10. Edit Global Filter Sets

	2.4.4. The DCF Command-line Operation

	2.5. Using Multiple Versions of the DCF
	2.5.1. UNIX
	2.5.2. Windows
	2.5.3. Testing

	2.6. Windows x86 vs. x64

	3. Dicom Programming Overview
	3.1. Core DCF Dicom classes
	3.1.1. Element related
	3.1.2. Association Manager

	3.2. Verification Service Class
	3.2.1. Verification Client (SCU)
	3.2.2. Verification Server (SCP)

	3.3. Storage-related Service Classes
	3.3.1. Store Client (SCU)
	3.3.2. Store Server (SCP)
	3.3.3. Storage Commitment Server (SCP)
	3.3.4. Storage Commitment Client (SCU)
	3.3.5. Storage Commitment Client Agent

	3.4. Query/Retrieve (Q/R) Service Class
	3.4.1. Q/R Client (SCU)
	3.4.2. Q/R Server (SCP)

	3.5. Modality Worklist Service Class
	3.5.1. MWL SCU
	3.5.2. MWL Server (SCP)

	3.6. Modality Performed Procedure Step Service Class
	3.6.1. MPPS Client (SCU)
	3.6.2. MPPS Server (SCP)

	3.7. Print Service Class
	3.7.1. Print Client (SCU)
	3.7.2. Print Server (SCP) – (C++ only)

	3.8. Dicom File (Media Storage) Services
	3.8.1. Dicom File Set Reader (FSR role)
	3.8.2. Dicom File Set Creator and Updater (FSC and FSU roles)

	4. C++ Programming Examples
	4.1. Running Example Servers
	4.1.1. Using the Web Service Interface
	4.1.2. Using a DCF Command Prompt – w/Common Services
	4.1.3. Using a DCF Command Prompt – w/Minimal Resources

	4.2. Dicom Programming Examples
	4.2.1. Reading a Dicom file and extracting an element from the header
	4.2.2. Creating a Dicom file that contains image data and patient demographics
	4.2.3. Using the C++ StoreClient
	4.2.3.1. Creating a job from DicomPersistentObjectDescriptors
	4.2.3.2. Using C++ StoreClient to C-Store DicomDataSets in memory
	4.2.3.2.1. Use Store SCU directly
	4.2.3.2.2. Create a "special" DPOD (DicomPersistentObjectDescriptor) and use StoreClient

	4.2.4. Using the C++ PrintClient
	4.2.5. Media Storage Application Profiles – DICOMDIR files
	4.2.5.1. Example – Creating a DICOMDIR
	4.2.5.2. Example – Adding to a DICOMDIR
	4.2.5.3. Example – Reading a DICOMDIR

	4.3. Deploying a Simple Standalone DCF C++ Application
	4.4. Common Services Programming Examples
	4.4.1. C++ “hello world” Example Application Using the DCF
	4.4.2. Using the LOG interface – Logging from C++ programs
	4.4.3. Using the CDS interface
	4.4.4. Using the APC interface

	4.5. Advanced Dicom Programming Examples
	4.5.1. Writing a customized storage SCP
	4.5.2. Writing a customized query retrieve SCP

	4.6. Using the C++ Modality Worklist examples
	4.7. Dicom compression transfer syntax support for C++

	5. Java Programming Examples
	5.1. Running Example Servers
	5.2. Using the DCF with Java IDE tools
	5.2.1. Using the DCF with Eclipse for Java

	5.3. Dicom Programming Examples
	5.3.1. Using Java Print Element Value Program
	5.3.1.1. Example – ex_jprint_element_value

	5.3.2. Using Java modify Dicom image data program
	5.3.2.1. Example – ex_jModPixelData

	5.3.3. Using Java Dicom Verification (Echo) Client Classes
	5.3.3.1. Example – ex_jecho_scu

	5.3.4. Using Java Modality Worklist Query SCU Classes
	5.3.4.1. Example – ex_jmwl_client

	5.3.5. Using Java Print Client Classes
	5.3.5.1. Example – ex_jprint_client

	5.3.6. Using Java Store Client Classes
	5.3.6.1. Example – ex_jstore_client

	5.3.7. Using Java Q/R Client Classes
	5.3.7.1. Example – ex_jqr_scu

	5.3.8. Handling alternate character sets with DCF (Java)

	5.4. Deploying a Simple Standalone DCF Java Application
	5.5. Common Services Programming Examples
	5.5.1. Java “Hello World” Example Using DCF Common Services
	5.5.2. Using the LOG interface – Logging from Java programs
	5.5.3. Using the CDS interface
	5.5.4. Using the APC interface

	5.6. Advanced Dicom Programming Examples
	5.6.1. Using StorageCommitmentSCU
	5.6.1.1. Example – Send store commit requests, and receive StoreCommitClientListener notifications

	5.6.2. Using Java MWLClient Classes
	5.6.2.1. Example – ex_jmwl_scu

	5.6.3. Using Java MPPSClient Classes
	5.6.3.1. Example – ex_jmpps_scu

	5.6.4. Using Java Store, Q/R, and MWL Server-Related Classes
	5.6.4.1. Example – ex_jstore_scp
	5.6.4.2. Example – ex_jqr_scp
	5.6.4.3. Example – ex_jmwl_scp
	5.6.4.4. Using the MWL Server as an MPPS Server
	5.6.4.5. Example – Server Objects
	5.6.4.6. Example – StoreSCP: Implementing a custom storeObject method
	5.6.4.7. Additional coding examples:
	5.6.4.8. Writing a Custom Dicom SCP

	5.7. Dicom Compression Transfer Syntax Support for Java
	5.7.1. Example – ex_jdcf_filter: Uncompressed to Compressed
	5.7.2. Example – ex_jdcf_filter: Compressed to Uncompressed

	5.8. JAI – DCF integration for Java
	5.8.1. Example – ex_jdcf_dcm2jai: Convert a Dicom file to a JAI type
	5.8.2. Example – ex_jdcf_jai2dcm: Convert JAI types to a Dicom file
	5.8.3. Example – ex_jdcf_dcmview: View a Dicom Image file
	5.8.4. Example – Writing a JPEG Image with Java

	6. C# Programming Examples
	6.1. Running Example Servers
	6.2. Using the DCF with MS Visual Studio .NET 2003/2005 for C#
	6.2.1. Opening an Existing C# Example Project
	6.2.2. Quick Start - Using create_cs_comp.pl to generate VS project files and source code
	6.2.3. Using dcfmake.pl to generate a .csproj file
	6.2.4. Manually Creating C# Projects from MS Visual Studio 2003/2005 IDE

	6.3. Dicom Programming Examples
	6.3.1. Dicom File Access
	6.3.1.1. Example – Open a Dicom file
	6.3.1.2. Example – Create a Dicom file
	6.3.1.3. Example – Create a Dicom file from Config Group Data
	6.3.1.4. Example – Open, Modify, and Save a Dicom file

	6.3.2. Using VerificationClient
	6.3.2.1. Example – Connect to a Verification SCP

	6.3.3. Using StoreClient
	6.3.3.1. Example – Create and submit a store job from files on disk
	6.3.3.2. Example – Create and submit a store job – Handling Events

	6.3.4. Using Query/Retrieve classes
	6.3.4.1. Example – Using Query/Retrieve

	6.3.5. Using PrintClient
	6.3.5.1. Example – Create and submit a print job, handling status events
	6.3.5.2. Example – Create and submit a print job where ImageBox data comes from Dicom disk files.

	6.3.6. Creating and Populating Dicom Sequences
	6.3.6.1. Example – Explicitly creating Dicom Sequence elements
	6.3.6.2. Example – Setting Dicom Sequence elements using a config group

	6.3.7. Handling alternate character sets with DCF (C#)

	6.4. Deploying a Simple C# Standalone Application
	6.4.1. Deploying a Simple C# Standalone DCF Application
	6.4.2. Deploying a Simple C# Standalone OEM Application

	6.5. Common Services Programming Examples
	6.5.1. C# “hello world” Example Application Using the DCF
	6.5.2. Using the LOG interface – Logging from C# programs
	6.5.3. Avoiding or Embracing use of the Common Services
	6.5.4. Using the CDS interface
	6.5.5. Using the APC interface

	6.6. Advanced Dicom Programming Examples
	6.6.1. Using StorageCommitmentSCU
	6.6.1.1. Example – Send store commit requests and receive StoreCommitClientListener notifications

	6.6.2. Using MWLClient
	6.6.2.1. Example – Send Worklist Query and wait for all responses before continuing
	6.6.2.2. Example – Send Worklist Query and handle responses as they arrive

	6.6.3. Using MPPSClient
	6.6.3.1. Example – MPPSClient Console Application
	6.6.3.2. Example – Send DIMSE N-CREATE or N-SET messages to a MPPS Server

	6.6.4. C# Store, Q/R, and MWL Server-Related Examples
	6.6.4.1. Using the MWL Server as an MPPS Server
	6.6.4.2. Example – Implementing a custom storeObject() method
	6.6.4.3. Example – How DicomDataService (DDS) gets called:
	6.6.4.4. Example – Adding OEM specific data to DicomSessionSettings:
	6.6.4.5. Example – Receiving or Logging Retired SOP classes:
	6.6.4.6. Writing a Custom Dicom SCP

	6.7. Dicom compression transfer syntax support for C#

	7. Using DCF System Manager to control processes
	7.1. Installing and Starting the System Manager
	7.1.1. Installing and starting as a service on Windows
	7.1.2. Installing and starting as a normal server process on Windows
	7.1.3. Installing and starting on Unix

	7.2. System Manager Related Interfaces
	7.3. System Manager Configuration
	7.3.1. System Manager Application Configuration
	7.3.2. System Manager System Configuration

	7.4. System startup for a DCF server application
	7.5. System shutdown for a DCF server application

	8. The DCF Development Environment
	8.1. Using the dcfmake.pl utility
	8.1.1. Command line options for dcfmake.pl
	8.1.2. The cinfo.cfg file
	8.1.3. Generated files for various component types

	8.2. Example: Creating a DCF library component
	8.3. Example: Creating a DCF application component
	8.4. Using iodgen to create Dicom dataset wrappers to represent an IOD

	9. Configuring DCF Applications
	9.1. Configuration Files and the CDS interface
	9.1.1. Using cds_client to access data in the configuration database
	9.1.2. Receiving notifications of updated data

	9.2. Application and Process Configurations
	9.2.1. Application Configuration Settings
	9.2.1.1. Structure of an application or process configuration

	9.3. Process Configuration Settings
	9.3.1. Process configuration with AppControl setup
	9.3.1.1. Monitoring the Process Configuration

	9.3.2. Process configuration without AppControl setup
	9.3.3. Creating a custom application configuration

	9.4. Log/Debug tracing control using “debug_flags”
	9.4.1. Example – Setting Debug Flags for an Example App
	9.4.2. Defined Debug Flags

	9.5. C#-related Configuration Notes
	9.5.1. Description of DCF setup code
	9.5.2. Common services setup description:

	10. Configuring Dicom features
	10.1. Java and C# Dicom configuration
	10.1.1. Example Session settings

	10.2. C++ Dicom configuration
	10.3. Customizing DicomDataDictionary

	11. Dicom Image Compression
	11.1. Lossy Compression Quality Issues & Concerns
	11.2. JPEG Encoding Notes
	11.2.1. JPEG Lossless (.57, .70) Encoding Notes
	11.2.2. JPEG Lossy (.50, .51) encoding notes
	11.2.3. JPEG 2000 Lossless (.90) encoding notes
	11.2.4. JPEG 2000 Lossy (.91) encoding notes

	11.3. JPEG Decoding Notes
	11.3.1. Photometric Interpretation Problems
	11.3.2. JPEG Lossless (.57, .70) Decoding Notes
	11.3.3. JPEG Lossy (.50, .51) Decoding Notes
	11.3.4. JPEG 2000 Lossless (.90) Decoding Notes
	11.3.5. JPEG 2000 Lossy (.91) Decoding Notes

	11.4. Using Aware, Inc JPEG Compression libraries
	11.4.1. C# configuration
	11.4.2. Java Configuration
	11.4.3. C++ Configuration

	12. I/O Statistics for Java and C#
	13. Deploying a DCF-based application
	13.1. Deployment Guidelines
	13.2. License Key for a Deployed Application
	13.2.1. OEM applications that ship with an installed license
	13.2.2. OEM applications that do not ship with an installed license
	13.2.3. OEM applications that use an activatable license

	13.3. Limiting the DCF libraries required for Deployment
	13.3.1. Find Application Dependencies - Windows
	13.3.2. Find Application Dependencies - Linux
	13.3.3. Find Application Dependencies - Java

	13.4. Deploying standalone applications containing DCF code
	13.4.1. Language Specific Standalone Installation
	13.4.2. An Example Application Installer

	13.5. Dicom Ports

	Appendix A: Glossary of Terms
	Appendix B: Bibliography
	1. The Dicom Standard
	2. Integrating the Healthcare Enterprise (IHE)
	3. Sources for Compression Related Information
	Appendix C: Storing Images from Print SCP
	1. Collecting image and association info from Print_SCP
	1.1. Preparation and Configuration Steps
	1.2. Example Batch Script
	1.3. Viewing Print SCP output via a web browser

	Appendix D: Using DCF Dicom Filters
	1. Fixing or working-around protocol problems
	1.1. An application is sending an incorrect field in a Dicom print request
	1.2. Modifying the DIMSE messages sent by a Java application

	2. Using DicomTestFilter to support automated testing
	3. Logging/Debugging Dicom Filter Effects
	4. Using DCF Dicom Filters Overview
	5. DCF Dicom Filter Configuration Overview
	5.1. Sample configuration for the DicomElementFilter class.
	5.2. Other Filter Types
	5.3. Filter Configuration Files
	5.3.1. Specifying a Sequence in a Configuration File
	5.3.2. Using Macros to Specify Data

	5.4. Example Filters
	5.4.1. Example 1: Replacing a Value
	5.4.2. Example 2: Removing an Element
	5.4.3. Example 3: Modifying an Element’s Value with Regular Expressions
	5.4.4. Example 4: Padding an Element’s Value

	6. Developing Custom Filters
	6.1. Custom Filters in Java
	6.2. Custom Filters in C#

	Appendix E: DCF MakeUID Function
	1. Description of the DCF makeUID function
	2. The function getUIDPrefix() returns the uid_prefix.
	3. The function getUIDSuffix() returns a new UID suffix each time it is called.
	Appendix F: Using Nunit tests with DCF .NET Applications
	1. Example NUnit test class
	2. Some Background on NUnit:
	Appendix G: Using Perl with the DCF
	Appendix H: Customizing the DCF Remote Service Interface
	1. Shortcuts for Setting Debug Flags
	1.1. Debug Shortcuts
	1.2. Viewing the current settings

	2. Example Debug Shortcut File
	3. CDS Configuration Shortcuts
	3.1. Shortcut Attributes
	3.1.1. Types of shortcuts
	3.1.1.1. title
	3.1.1.2. html
	3.1.1.3. display_only
	3.1.1.4. integer or string
	3.1.1.5. boolean

	3.1.2. Optional attributes:
	3.1.3. Synchronizing attributes:

	3.2. Automatic Shortcut Generation
	3.3. Example shortcut configuration file:

	4. Authenticating Access to DCF Web Pages
	5. Java Applet Issues
	6. Other Applet Issues
	6.1. Enabling Java
	6.2. Firewall Issues
	6.3. JavaScript Issues

	Appendix I: Editing the Extended Data Dictionary
	Appendix J: Product Licensing and Activation
	1. Installing a new SDK License
	2. Activating an SDK License
	2.1. SDK Network Activation Mode
	2.2. SDK Manual Activation Mode

	3. Deploying OEM Applications with an Activatable License
	3.1. Developer Perspective
	3.1.1. Files to Distribute

	3.2. User Perspective
	3.2.1. Install the un-activated template license
	3.2.2. Create and Reserve a license
	3.2.3. Activate a license
	3.2.3.1. Network Activation Mode
	3.2.3.2. Manual Activation Mode

	3.3. Administrative Issues
	3.3.1. Reactivating a License
	3.3.2. Transferring a License
	3.3.3. Networking Issues Related to Network Activation

